BRL

CONTRACT REPORT NO. 272

NUMERICAL ANALYSIS OF LAMINATED, ORTHOTROPIC COMPOSITE STRUCTURES

Prepared by

University of Illinois
Aeronautical and Astronautical
Engineering Department
Urbana, Illinois

November 1975

Approved for public release; distribution unlimited.

USA BALLISTIC RESEARCH LABORATORIES ABERDEEN PROVING GROUND, MARYLAND

Destroy this report when it is no longer needed. Do not return it to the originator.

Secondary distribution of this report by originating or sponsoring activity is prohibited.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia 22151.

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

REPORT DOCUMENTATI	ON PAGE	READ INSTRUCTIONS
. REPORT NUMBER		BEFORE COMPLETING FORM 3. RECIPERATE CATALOG NUMBER
Contract Report Number 272		(9)
HITE CONTENTS OF THE PARTY OF T		S. TYPE OF MEPONT & PENTOS STENE
Numerical Analysis of Laminated	l, Orthotropic	BRL Contract Report
Composite Structures.		1 Jan 74 to 31 Dec 74
		6. PERFORMING ORG. REPORT NUMBER
		NONE 6. CONTRACT OR GRANT NUMBER(s)
	(IE	
A.R. Zak	(13	DAAD05-73-C-0197
手		
PERFORMING ORGANIZATION NAME AND ADD Aeronautical and Astronautical		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
University of Illinois	angar arpor	(2(07) 1MF(2(07)296 002)
Urbana, Illinois		62603A, 1M562603A286, 002A
11. CONTROLLING OFFICE NAME AND ADDRESS		MAT NEPONT DATE
USA Ballistic Research Laborate	ories (///	NOVERS 575
Aberdeen Proving Ground, Maryla	and 21005	10- HOMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(II di	flerent trom Controlling Office)	116 15. SECURITY CLASS. (of this report)
US Army Materiel Command		L.
5001 Eisenhower Avenue		Unclassified
Alexandria, VA 22333		15. DECLASSIFIC TION DOWN GRADING
6. DISTRIBUTION STATEMENT (of this Report)		
		18 BKLI
Approved for public release; d	istribution unlimit	ed.
DA-1-M-56260	3-1,-286	19CK-212
1-M-562693-	H-28600	(oport)
I III Odstap		1
IS. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse eide if necess	ary and identify by block number)
Anisotropic, Orthotropic, Anal	ysis, Finite Elemen	t, Three Dimensional
Deformations		
O. ABSTRACT (Continue on reverse elde Il necessa	er and identify by black members	
This report presents the two mai		
during the past contract year.	One investigation w	as intended to check-out
previously developed finite-elem	ment computer progra	ims on a large degree-of-
freedom composite material model	. This was done by	applying the analysis to a
recoilless rifle configuration. results for this problem are pre		
	developing fractur	6 model / lux compact : 6
investigation was concerned with materials. Two different wodels	developing fractur were developed. O	me model deals with interla

TO THE STATE OF THE WORLD SEE THE SECOND SEE THE SECOND SE

SECURITY CLASSIFICATION OF THIS PAGE(Then Date Entered

minar failure and the other predicts the matrix failure within an individual composite ply. No suitable experimental results are presently available to check out the first model but the second model is found suitable for explaining experimental results dealing with a nonlinear response of certain cylindrical models loaded to failure by internal pressure. These results, obtained from experiments performed at the Ballistic Research Laboratories, show that pronounced nonlinear structural response occurs at a fraction of failure load which suggests that an appreciable degradation of material occurs at relatively low stress levels. It is shown that this phenomenon can be explained by a model that assumes that the shear modulus in the plane of the fibers is reduced by matrix material failure parallel to the fibers.

UNCLASSIFIED

TABLE OF CONTENTS

		Page
I.	INTRODUCTION	7
II.	LINEAR STRESS ANALYSIS OF RECOILLESS RIFLE	8
	Finite-element model	8
	Numerical results	10
III.	NONLINEAR MATERIAL RESPONSE	11
	Experimental results	11
	Linear Stress Analysis	12
	Methods of Analysis	14
	A. Interlaminar Slip	14
	B. Matrix Material Failure	18
IV.	CONCLUSIONS	21
	FIGURES	22
	APPENDIX A INPUT CARD DESCRIPTION	51
	APPENDIX B PROGRAM LISTING FOR INTERLAMINAR FAILURE ANALYSIS	61
	DISTRIBUTION LIST	113

LIST OF ILLUSTRATIONS

Figure		Page
1.	Nozzle section of the recoilless rifle.	22
2.	Center section of the recoilless rifle.	23
3.	Forward section of the recoilless rifle.	24
4.	Finite-element grid in the I,J coordinates for the aft section.	25
5.	Finite-element grid in the I,J coordinates for the center section.	26
6.	Finite-element grid in the I,J coordinates for the forward section.	27
7.	Finite-element grid for recoilless rifle.	28
8.	Internal pressure distribution.	29
9.	Radial distribution of fiber and hoop stress at axial location $z = 139.7 \text{ mm}$.	30
10.	Radial distribution of fiber and hoop stresses at axial location $z = 223.5 \text{ mm}$.	31
11.	Radial distribution of fiber and hoop stresses at axial location $z = 322.5$ mm.	32
12.	Radial distribution of the magnitude of the shear stress σ at axial location $z = 139.7$ mm.	33
13.	Radial distribution of the magnitude of the shear stress σ_{ns} at axial location $z = 223.5$ mm.	34
14.	Radial distribution of the magnitude of the shear stress σ_{ns} at axial location $z = 322.5$ mm.	35
15.	Axial distribution of axial stress, hoop stress, and maximum shear stress in the adhesive layer.	36
16.	Axial distribution of the maximum fiber stress σ_n and shear stress σ_{ns} .	37
17.	Longitudinal strain measured as a function at internal pressure.	38
18.	Circumferential strain measured as a function of internal pressure.	39
19.	Arrangement of orthotropic plies in the test cylinder.	40
20.	Experimental Test Arrangement.	41
21.	Nondimensional slope variation with pressure.	42

Figure		Page
22.	Axial distribution of the shear stress σ_{rz} .	43
23.	Radial distribution of the fiber stress σ_n calculated by using 4 elements to represent each ply in the thickness direction.	44
24a.	Nodal point on interlaminar plane.	45
24b.	Relative slip at the ncdal point following failure.	45
25.	Simplified computer flow chart showing the arrangement of the iterative schemes.	46
26a.	Cylindrical configuration used in the numerical example.	47
26h.	Finite-element grid used in the numerical calculations.	47
27.	Macroscopic model of composite material subject to shear stress.	48
28.	Dependence of shear modulus factor on the shear strain.	49

I INTRODUCTION

During the first part of this investigation two finite-element models were developed^{1,2} for the purpose of analysis of laminar, orthotropic structures in the form of bodies of revolution. The models allow for orthotropic axes to be arbitrarily oriented with respect to the cylindrical coordinates. Because of this, the models allow for three compenents of displacements including the two components in the meridian plane and the circumferential component. As a result, the models can be used to analyze unbalanced laminar configurations and interlaminar stresses can be predicted. The two models which have been developed differ in the basic finite-element shape which was used. The shape is defined by the cross-section of the elements in the meridian plane.

In the first model¹, a nine degree-of-freedom, straight sided, triangular element was used. In this element, the three components of displacement are defined at each corner of the triangle and a linear displacement variation is assumed inside the element. In the second model², a higher order, isoparametric element was used with quadratic displacment variations for two of the meridian displacements and a linear variation for the circumferential component. These elements are triangular with curved sides and mid-side nodes in addition to the corner nodes. Each of these elements possesses fifteen degrees-of-freedom.

A number of numerical examples were analyzed with both of these models to check-out the methods and the associated computer programs. One of these examples was analyzed by both models and was intended to compare the relative accuracy of each method. It was found that, for an equivalent number of total degrees-of-freedom, the results given by both methods were very close². Although the total number of degrees-of-freedom in both models was the same, fewer of the isoparametric elements had to be used. The conclusion from this study was that each of these models was equally accurate and either one could be used for any given problem.

The various examples which were analyzed 1,2 during check-out contained relatively few degrees of freedom. However, both computer programs were designed to handle much larger problems and consequently it was desired to check-out this capability. Since both of these programs are similar in their solution of the global matrix equations, it was decided to apply only one of these programs to a large problem. For this, the model with the straight sided elements was chosen since it permitted a large number of elements to be used for a given total number of degrees-of-freedom. This fact was advantageous in the problem to be analyzed since it permitted more flexibility in modelling the orthotropic plies of the structure. The problem analyzed corresponds to a recoilless rifle configuration made up from a large number of orthotropic, fiberglass plies. The analysis of

A. R. Zak, "Second Quarterly Report," U.S. Army Contract No. DAADO5-73-C-0197.

A. R. Zak, "Final Report," U. S. Army Contract No. DAADO5-73-C-0197, January, 1974.

this structure and the numerical results will be discussed in the first part of this report.

The second line of investigation was concerned with the failure analysis of laminated structures. Two possible modes of failure were postulated and numerical methods necessary to examine them were developed. These methods are related to the linear finite-element method discussed previously. The first mode of failure to be examined consists of interlaminar cracking. In this model an ultimate shear stress is assigned to the region between the composite plies and the plies are allowed to slip relative to each other when this stress is exceeded. In the second model the failure is assumed to occur inside the matrix of an individual ply. This failure is gradual since the matrix stresses are not uniform and, consequently, higher stressed regions would fail first. The consequence of such failure is a reduction in the effective transverse material properties of the total composite ply.

Each of these failure modes was considered a possible explanation of certain experimental results, which were obtained at the Ballistic Research Laboratories³. In these experiments a strong nonlinear response was observed when certain laminated cylindrical specimens were loaded up to the failure level. The cylinders were loaded by time dependent internal pressure and produced a nonlinear strain-pressure history. Both the longitudinal and the circumferential strains were measured and the response was found to be nonlinear even at loads only a fraction of the ultimate value. This suggests that a measurable degradation of the material properties occurs, and the objective was to determine if either one of the failure models could explain this behavior. This study is described in the second part of the report.

II LINEAR STRESS ANALYSIS OF RECOILLESS RIFLE

Finite-Element Model

The cross-section of the recoilless rifle is shown in three parts in Figures 1 to 3. It can be seen that the rifle is composed of two sections of fiber-reinforced composite material joined together by an adhesive layer. The composite material is arranged in helical and hoop plies. The helical plies are arranged in pairs with equal and opposite wrap angle. There are two distance scales used in the radial direction in Figures 1 to 3. One scale is used for the internal surface and another scale, 3.58 times larger, is used for distances inside the cross-section. Consequently, the model looks 3.58 times as thick as the real structure. However, in the finite-element stress analysis, the correct dimensions are used.

³J. N. Majerus, W. F. Donovan and R. W. Greene, "Hot Gas Test Fixture with Minimized End Restraints for Rapidly Pressuring Anisotropic Tube Type Structures," Ballistic Research Laboratores, Memorandum Report No. 2459, March 1975. (AD #B003671L)

In the finite-element model, the structure is divided into 1368 elements and the element boundaries are chosen so as to correspond to the boundaries of the composite material plies. A set of elements was also chosen to correspond to the adhesive layer. The finite-element grid can first be illustrated in the I-J coordinates which is shown in Figures 4 to 6. In this coordinate system, each element is represented by a square. This representation of the finite-element grid is useful in establishing the information for the generation of the actual finiteelement model as well as other necessary input data. In Figures 4 to 6, the solid lines illustrate the material block cards and the dotted lines are the elements inside each block. Altogether there were 123 material blocks used. One of these blocks was used to define the adhesive layer and the remaining blocks contained composite, orthotropic material. The computer program! allows for the orthotropic axes to differ from block to block. In each block the axes of orthotropy in the meridan plane is constant and the helical orientation of the axes can either be constant or vary by a factor of plus or minus1. In Figures 4 to 6, the I-J coordinates are shown for selected nodes in order to illustrate the size of the grid. The actual finite-element grid generated in the program and used in the stress analysis is shown in Figure 7. This grid was generated in the computer and as in the case of Figures 1 to 3, two different plotting scales were used in the cadial direction in order to illustrate cross-sectional detail.

The elastic orthotropic properties for the composite material which were used in the analysis are given in Table I below:

Table I

Elastic Orthotropic Material Properties for the Composite Material

 $E_n = 58.6 \text{ GPa}$ $E_s = 13.79 \text{ GPa}$ $E_t = 13.79 \text{ GPa}$ $v_{ns} = .25, G_{ns} = 4.82 \text{ GPa}$ $v_{nt} = .25, G_{nt} = 4.82 \text{ GPa}$ $v_{st} = .45, G_{st} = 1.379 \text{ GPa}$

The nomenclature in Table I corresponds to the definitions given in Reference 1. The direction n is chosen along the fibers, s is perpendicular to the fibers and in the plane of the laminar, and t is the remaining orthotropic axis in the transverse direction. The mechanical properties for the adhesive layer were assumed to be isotropic and the Young's modulus and Poisson's ratio used was E = 3.44 GPa and v = 0.35.

The load applied to the structure was assumed to be composed of an internal pressure acting on the inside surface of the structure. In the chamber section the pressure was assumed to be uniform and equal to 6.895 x 107 Pa. In the barrel section, where the radius is constant, the pressure was continued at the same constant value. In the nozzle throat the pressure was assumed to make a step jump and a uniform pressure of 1.385 x 10 Pa was used on the diverging section of the nozzle. This value was chosen as to balance the total load acting on the structure. The pressure load just described is illustrated in Figure 8. It may be noted that although the pressure distribution at the nozzle and barrel sections is somewhat arbitrary, this will not be a critical factor since the largest stresses are produced in the chamber section and these are mainly a function of the champer pressure. If the chamber pressure should not be equal to 6.895 x 107 Pa as used in this analysis, the corresponding stresses can be obtained from this analysis by linear scaling.

Numerical Results

Because of the large number of degrees-of-freedom involved in this analysis, a great deal of stress and strain data was generated by the solution. At each nodal point the solution generates three components of displacement and for each element two sets of stresses and strains are calculated. One set is in the cylindrical coordinates and the other is along the axes of orthotropy. Consequently, it is practical to present here only a small amount of this data. In choosing the data for presentation, it was observed that the largest stresses occur in the hoop direction and that they are in the chamber region of the structure. Figures 9 to 11 show the radial hoop stress distribution at three different axial stations defined approximately by z = 139.7 mm, 223.5 mm and 322.5 mm respectively. Also shown in these diagrams are the stresses in the direction of the glass fibers. The hoop stresses are given by the dotted curves and the stresses in the fiber direction are given by the solid curves. In the case of the hoop plies, the two curves obviously coincide and only the solid curve is seen. Figures 12 to 14 show similar results for the shear stresses in the plane of the orthotropic plies at the same values of z. It can be observed from these figures that there are large variations of the stresses through the thickness and this variation is most pronounced when going from a helical to a hoop ply. As expected, the largest fiber stresses occur in the hoop plies as can be seen from Figures 9 and 10. In Figure 9 two hoop plies exist through the thickness and these produce the two peaks shown. In Figure 10 we also encounter two hoop layers leading to two peaks, and furthermore, there is a pronounced dip in the curves as the adhesive layer is crossed. The results in Figure 11 show stresses through helical plies only, but there is still a large variation due to change in helical angle through the thickness. The largest transverse shear stresses occur in the helical plies and these stresses are also discontinuous from one ply to another.

Other interesting results are the stresses in the adhesive layer. In Figure 15 a plot is given showing the variation of the maximum shear stress, the hoop stress, and the longitudinal stress as a function of

the corrdinate z. The failure of the adhesive layer would be governed by the maximum shear stress which can be seen from Figure 15 to be about 6.2 x 10⁷ Pa. Further results are shown in Figure 16 where an axial distribution is shown of the maximum fiber stress and the maximum transverse shear stress through the thickness of the cross-section. It can be seen that a large variation of these stresses exists in both the nozzle and the chamber sections.

In conclusion, it is interesting to note the maximum fiber stress and its location. The maximum fiber stress occurred in element number 927 and its magnitude was 168.7×10^7 Fa. This element is in the hoop ply region and its approximate position is identified in Figure 3. The average coordinates for this element are r = 58.6 mm and z = 202.8 mm.

III NONLINEAR MATERIAL RESPONSE

Experimental Results

Figures 17 and 18 show one set of typical results of an experimental investigation conducted at the Ballistic Research Laboratories³. In this study a set of cylindrical fiber reinforced models was subjected to time dependent internal pressure loads which eventually led to total structural failure. The specimens were made from S glass fibers with six plies as shown in Figure 19. The four internal plies were constructed with a 54 degree helix angle and the two outside plies with an 83 degree angle. These angles were alternated in each successive ply in order to produce a balanced structure. The length of each cylinder was 388.62 mm, the inside diameter was 67.56 mm and the ply thicknesses are given in Figure 19.

The cylinders were loaded by burning about 0.09 kg of propellent which produced a time dependent pressure-time curve. The ends of each cylinder were sealed by plugs as shown in Figure 20. These plugs did not apply an appreciable axial load to the cylinder, and as the cylinder expanded some amount of gas was released between the cylinder and the plugs. A detailed description of the experimental apparatus can be found in Reference 3.

The results shown in Figures 17 and 18 contain the strain measurements obtainable from strain gages situated on the external surface of the cylinder. The strains are given as a function of the internal pressure. The strain gages were mounted to measure both the circumferential and longitudinal strains as a function of time, and then these strains were correlated with the recorded pressures. These strains were measured at three different points in the cylinder, two of these being at 12.7 mm from the cylinder ends and the third at the center. All three readings are shown in Figures 17 and 18, and it can be seen that there is a measurable experimental difference between the readings. Some of this difference may be attributed to end effects.

However, only a small amount could be explained by this, since as the subsequent numerical calculations showed, the end effects die down quite rapidly.

The results for both the longitudinal, Figure 17, and the circumferential strains, Figure 18, show a pronounced nonlinear response. Furthermore, the nonlinear effects are more pronounced in the longitudinal strains. This can be illustrated by considering the slope of the response curves for both directions. Because of the variation between the different parts of the cylinder, it is necessary to speak of some average response. This is indicated by the solid lines drawn in Figures 17 and 18, which are approximately the average values of the three strain gage readings. In order to illustrate the relative nonlinearity in the two directions, the slopes of these curves were normalized relative to their initial slope at low pressure loadings, and the results of this are illustrated in Figure 21. The relative amount of nonlinearity can be measured by the deviation of this normalized slope from the value of 1.0, and it can be seen that this effect is most pronounced in the longitudinal direction.

Linear Stress Analysis

As the first step in the nonlinear investigation, a linear stress analysis was performed on the model corresponding to the experimental configuration shown in Figure 19. This was done by using the previously described finite-element program. Because of a symmetry about the center line only one half of the cross-section had to be modelled by the finite-elements. This was done by using 20 nodes over half of the cylinder and 25 nodes in the thickness direction. Each ply was represented by four elements through the thickness. The size of the elements in the longitudinal direction was varied by using smaller elements near the ends of the cylinder. This was done by using two elements 3.17 mm in length followed by two elements 6.34 mm in length. The remaining sixteen elements were divided equally. This grid permitted a good resolution of the end stresses and Figure 22 shows the axial variation of the maximum shear stress σ_{r_7} . It can be seen that these stresses are limited to only a very small distance of the ends of the cylinder. The results of this analyses show that the stress conditions are essentially constant over the length of the cylinder. This is expected since the thickness of the cylinder relative to the radius is very small as seen in Figure 19.

Initially there was no guarantee that the orthotropic material properties used in the finite-element analysis would correspond exactly to the experimental model. Consequently, initially a reasonable set of values was chosen and the calculated response was compared to the measured response at low pressure levels. The results of this initial calculation showed insignificant variation of stresses and strains through the thickness of each ply as illustrated in Figure 23 where the fiber $\sigma_{\rm hi}$ is plotted over the thickness of the cylinder. Therefore, in

the subsequent calculations each ply was represented by one element in the thickness direction. This permitted a small grid size and, consequently, much faster execution time. After the initial linear calculation the material properties were adjusted as to agree with the experimental data, and these values are given in Table II below:

Table II

Elastic Orthotropic Material Properties for the Test Cylinder

$$E_n$$
 = 38.2 GPa
 E_s = 9.37 GPa
 E_t = 9.37 GPa
 v_{ns} = 0.25, G_{ns} = 3.3 GPa
 v_{nt} = 0.25, G_{nt} = 3.3 GPa
 v_{st} = 0.45, G_{st} = .896 GPa

The properties in Table II have the same meaning as in Table I.

In the linear calculation, the actual value of the pressure is not important since the load and the stresses are linearly scaled. Table III below contains some of the results obtained by using a pressure of 6.895 x 106 Pc uniformly distributed over the length of the cylinder. The results given are the stresses in the local orthotropic coordinates for each material ply. The plies are numbered starting on the inside of the cylindrical surface. Only four stresses are shown since the remaining two stresses were found to be negligible.

Table III

Calculated Linear Stresses in the Test Cylinder († 10⁶ Pa)

Ply Number	$\frac{\sigma_n}{n}$	<u> </u>	$\frac{\sigma_{\mathbf{t}}}{\mathbf{t}}$	ns
1	100.8	4.9	-6.6	-25.47
2	99.7	5.0	-6.0	25.3
3	99.0	4.9	-5.5	-25.2
4	97.9	5.0	-4.9	25,2
5	191.7	-13.5	-3.5	- 6.3
6	189.6	-12.7	-1.0	6.3

It can be seen from Table III that, as expected, the largest stresses are the normal stresses σ_n along the fibers. The highest fiber stresses occur in the two outside plies which have the helical angle of 83 degrees. The next largest stresses are the shear stresses σ_{ns} and they are more predominant in the four inside plies. The remaining two stresses, σ_s and σ_t , are appreciably smaller. These results suggest that the maximum stress existing in the matrix material are shear stresses resulting from σ_{ns} .

Methods of Analysis

A. Interlaminar Slip

One possible failure mode in a laminated, composite structure is the separation of individual plies when interlaminar shear stress exceeds a critical value. If this phenomena would occur in any given structure, it would lead to a nonlinear response. In order to analyze this response it would be necessary to use an iterative, numerical approach. The objective was to develop such a method of analysis by using previously developed finite-element computer program as the basis. The results of this study are presented in this section.

The approach which has been developed can be illustrated by considering the four adjacent elements to a node which lies on the interface between material layers as shown in Figure 24a. The first step in the analysis is to check if a prescribed interlaminar shear stress is exceeded at this point in the material. Since the stresses are calculated in the elements, rather than the nodes, the failure at the node shown in Figure 24a is defined in terms of the resultant shear stresses in the four adjacent elements. The resultant shear stresses are calculated in each laminar parallel to the interlaminar plane. The average of this resultant stress over the adjacent elements is then compared against a prescribed failure criterion.

Referring to Figure 24a the elements above the interlaminar plane are called the upper elements and below they are the lower elements. If the shear stress exceeds the failure criterion at a particular node then there will be a relative motion of the upper and lower elements as illustrated in Figure 24b. This motion will be characterized by the physical condition that the net forces on the upper and lower elements at the given node which has failed will be zero parallel to the interlaminar plane. The slip displacements are characterized by two components for the upper and two for the lower elements. These components can be transformed into the cylindrical coordinates by the relations

$$\{\delta^{\mathbf{U}}\} = [T] \{\Delta^{\mathbf{U}}\}$$

$$\{\delta^{\mathbf{L}}\} = [T] \{\Delta^{\mathbf{L}}\}$$
(1)

where $\{\delta\}$ is the displacement vector in cylindrical coordinates due to nodal sip, [T] is the transformation matrix, and $\{\Delta\}$ the two slip components. The superscripts U and L refer to the upper and lower elements. Before the slip has occurred the nodal displacements for each element are known and therefore these known displacements are added to the displacements due to the slip as given by Equations (1). Consequently, the net force components on the upper and lower elements can be expressed in the following form

$$\{f^{U}\} = \{f^{U}\} + [Y]\{\Delta^{U}\}\$$
 $\{f^{L}\} + [Z]\{\Delta^{L}\}\$ (2)

where F represents total force and f is the force due to known displacements. The matrices [Y] and [Z] are known and are related to the stiffness matrices. The forces in Equations (2) are originally in cylindrical coordinates and by suitable transformation it is possible to obtain the two force components in the interlaminar plane. These components can be expressed in the form

$$\{P^{U}\} = \{A^{U}\} + [B^{U}]\{\Delta^{U}\}\$$
 $\{P^{L}\} = \{A^{L}\} + [B^{L}]\{\Delta^{L}\}\$ (3)

The condition for failure at a given node is now specified by the requirement of zero inplane forces

$$\{P^{\mathbf{U}}\} = 0$$

$$\{P^{\mathbf{L}}\} = 0$$
(4)

Equations (3) and (4) represent a set of four algebraic equations in the unknown slip components $\{\Delta^U\}$ and $\{\Delta^L\}$.

In the present method the above analysis is systematically applied to each node. First, each node at which interlaminar failure can occur is identified and checked for failure. If failure criterion is exceeded then slip components are calculated as indicated above.

One calculation at each node is, however, not sufficient. It can be easily seen that if failure occurs at two or more adjacent nodes the calculation of zero forces is not independent at each node. For example, if the condition of zero forces is satisfied at the first node, then when the similar conditions are specified at the adjacent node, the forces at the original node will be changed since they share some of the adjacent elements. Consequently, this calculation for each node is performed more

than once in an iterative fashion. In order to perform these calculations, the finite-element computer program from Reference 1 was used and modified by adding subroutines SET and ITERAT. A partial flow chart showing the relative positions of these two subroutines is given in Figure 25. For convenience this flow chart shows only some of the main subroutines which are pertinent to our discussion. The subroutine SET sets some of the data necessary to define the direction and the areas of possible interlaminar cracking. The iteration for satisfying zero interlaminar forces are performed in the subroutine ITERAT and this calculation is repeated a number of times in the loop DO 900 IS = 1, NSLIP. The parameter NSLIP is an inputed variable. As will be illustrated in a numerical example, this iteration does converge rather quickly. At each iteration additional slip components are calculated and added to the original displacements. In order to achieve a smooth convergence it was found desirable to modify the calculation slightly by only adding half of the slip displacements to the original displacements in each calculation cycle. The reason for this modification is that adjacent nodes share some of the elements and therefore these elements have their nodel displacements modified twice during each calculation cycle. Once the zero forces are obtained at each node, the overall equilibrium of the structure is disturbed and the total equilibrium has to be recomputed. This is done in the loop DO 900 INP = 1, NEQL, where again NEQL is an inputed variable. can be seen that for each calculation of equilibrium the node check for failure and calculation of slip components is performed NSLIP times.

In the modified computer program the input cards are similar to those used in the original linear version except three additional input cards were added. All the input parameters are described in Appendix A. The three additional cards are "Crack Iteration Card", "Crack Direction Card" and "Failure Block Definition Card." The listing of the modified computer program is given in Appendix B.

In order to check out the convergence of this method a simple numerical example was chosen. The example consists of a hollow circular cylinder as shown in Figure 26a. One end of the cylinder is clamped and the other is subject to a shear load of 6.895 x 107 Pa ever part of the boundary. The cylinder is composed of four orthotropic layers oriented in the axial direction. The finite-element grid used in the analysis is shown in Figure 26b. In the radial direction the elements are chosen to correspond to the orthotropic layers. In the computer program it is possible to specify shear failure at any arbitrary interlaminar region and in this example the fairure was specified to be possible in the center interlaminar plane. More specifically, failure was allowed at nodal points 8, 13, and 18 shown in Figure 26b.

The actual failure, and resultant nodal slip will depend on the magnitude of the failure stress. At first the failure stress was chosen at a low value of 5.5×10^6 Pa. This caused failure at the nodal points 13 and 18 where the original resultant interlaminar shear stresses were 6.2×10^6 Pa and 2.1×10^7 Pa respectively. This means

that at the nodal point 18 the ratio of the resultant stress to the failure stress was nearly 4. First the convergence of the nodel equilibrium iteration was examined. This iteration is governed by parameter IS. The measure of how fast this iteration converges are the nodal forces in the plane of failure. In this example it is possible to examine the axial force at node 18 on the upper elements of Figure 23a as a function of IS. This force is given in Table IV as a function of IS together with the initial value.

Table IV

Convergence of the Nodal Equilibrium Iteration

Iteration Number IS	Nodal Force (Newton's)
0	3.86×10^3
1	0.128×10^{3}
2	0.0004×10^3

It can be seen from Table IV that this iteration step is rapidly convergent.

Consider now the convergence of the iteration on the total equilibrium of the structure. This iteration is governed by the parameter INP. Again it is possible to measure this convergence by the nodal axial force at the node 18. In order to obtain a better feeling for this convergence, the example was also repeated for failure stress of 17.2×10^6 Pa. Consequently, at the node 18 the resultant stress exceeds the failure stress by a factor of approximately 1.25. Table V shows the value of nodal force for both values of the failure stress as a function of the iteration parameter INP.

Table V
Nodal Force (Newton's)

Iteration	Failure Stress 5.5 x 10 ⁶ Pa	Failure Stress 17.32 x 10 ⁶ Pa
1 2 3 4	3.87×10^{3} 1.61×10^{3} 3.38×10^{3} 3.347×10^{3}	$3.87 x 10^3$ $1.06 x 10^3$ $0.30 x 10^3$ $0.0084 x 10^3$

It can be seen from Table V that when the failure stress is closer to the actual stress, then the convergence is faster as expected. However, even when the failure stress has been exceeded by a factor of 4, as in the case of 5.5 x 10^6 Pa failure level, the convergence to 10 percent of the original force is achieved in four cycles.

B. Matrix Material Failure

The results presented in Figure 22 show that the interlaminar stresses in the cylindrical model used in the experimental investigation are very small compared to the other stresses and are confined to a small region near the ends of the cylinder. Consequently, it is not possible that the experimentally observed nonlinear effects could be explained in this case by the interlaminar failure model described in the previous sections. This suggests that another failure mode is occurring inside the orthotropic plies. Since the nonlinear effects were observed at fiber stresses equal to a fraction of the ultimate values, this suggests that fiber failure can be ruled out as the cause and matrix material failure must be considered.

In order to develop a failure model for the matrix, it is recognized that the transverse shear stress is transferred between the fibers and the matrix, and this stress will depend on the position inside the composite material. This can be illustrated by considering a schematic representation of a composite material as shown in Figure 27. diagram, a rectangular cube of the material is shown subjected to shear stress σ_{ns} and the fibers are assumed to be randomly packed. In certain region of the material, labelled A, the fibers may be close together and in other region, labelled B, the fibers will be relatively far apart. If the fiber material is assumed to be much more rigid than the matrix, as is the case for the glass reinforced materials, it can be shown that the shear stress in region A will be appreciably larger than in the region B. For idealized materials with regular fiber arrangement, this variation has been calculated analytically 4.5 and numerically 6.7 by other investigators, but in the case of real raterials with random packing this is not possible. Therefore, we proceed with an empirical relationship which states that the local matrix shear stress $(\sigma_{ns})_m$ is proportional to the overall shear strain in the composite material γ_{ns} and it can be expressed in the form

$$(\sigma_{ns})_{m} = K \gamma_{ns}$$
 (5)

⁴J. A. Kies, "Maximum Strains in the Resin of Fiberglass Composites," NRL Report 5752, March 1962.

⁵J. C. Schultz, "Maximum Stresses and Strains in the Resin of a Filament-Wound Structure," Presented at the 18th Annual Meeting of the Reinforced Plastics Conference, SPI, February 1963.

⁶D. F. Adams and D. R. Doner, "Transverse Normal Loading of a Unidirectional Composite," J. Composite Materials, Vol. 1, No. 2, 1967, p. 152.

⁷D. R. Adams and S. W. Tsai, "The Influence of Random Filament Packing on the Transverse Stiffness of Unidirectional Composites," J. Composite Materials, Vol. 3, July 1969, p. 368.

where K is a proportionality parameter and varies throughout the composite material. Some idea of how K can vary can be obtained from the previous studies on idealized materials, and it has been found to be dependent on the fibers and the matrix. 4,5,6,7

Consider now the problem of matrix failure. Since the various regions of the matrix are subjected to different levels of shear stress, the failure of the material will proceed gradually through the material with the regions most highly stressed failing first. Consequently, for a given shear strain γ_{ns} a certain amount of matrix will fail which in turn will lead to the reduction of the shear modulus G_{ns} . We can express this by the relation

$$G_{ns} = G_{nso} P (\gamma_{ns})$$
 (6)

where $G_{\rm nso}$ is the original value of the modulus, and the function $P(\gamma_{\rm ns})$ contains the modulus reduction factor which depends on the applied shear strain $\gamma_{\rm ns}$, the elastic properties of the components, and the fiber geometry. Once the geometry of the composite material and the ultimate stress are determined we can regard Equation (6) as a function of $\gamma_{\rm ns}$ only. In view of the fact that the random fiber configuration in real materials prevents deterministic solution, we must regard Equation (6) as an empirical relation to be established experimentally. The objective here is to do this using the experimental results described in the previous section.

As the first step in determining the relation expressed by Equation (6), it is assumed that the shear failure will only occur in the four inner plies where the maximum shear stress occurs as seen in Table III. In the next step a specific value of the function $P(\gamma_{ns})$ in Equation (6) is chosen. The first choice can be denoted by P_1 and therefore the shear modulus is given by

$$G_{ns} = G_{ns0} P_1 \tag{7}$$

At this point it is not known what internal pressure level p will produce the particular amount of failure corresponding to P_1 . Consequently, the pressure is chosen in the form

$$p = cp_0 \tag{8}$$

where p is a convenient known level of pressure, which in our case we used 6.895 x 10^6 Pa and c is an unknown factor. Stress analysis is now performed using the pressure p₀. From this analysis we can use either the results for the circumferential or the longitudinal strains to compare to the results obtained by initial calculation for the undamaged material using $G_{\rm nSO}$ modulus. In this analysis the longitudinal strains were compared. For this comparison a ratio $\epsilon_{\rm z}/\epsilon_{\rm zo}$ is calculated where

 ε_z and ε_{z_0} are the strains corresponding to the moduli G_{ns} and G_{ns_0} respectively. Using the solid line in Figure 17 it is possible to calculate the experimental value for the ratio ϵ_z/ϵ_{zo} as a function of the pressure. At this stage the calculated and the experimental values are compared and this determines the actual pressure which corresponds to the chosen value of P1 and also, from Equation (8), the constant c is determined. Knowing this constant, the shear strain corresponding to P_1 is known. By repeating this process for different values of the function $P(\gamma_{ns})$ given by P_2 , P_3 etc., a continuous relation can be established defining this function. In the present calculations four values of $P(\gamma_{ns})$ were used which varied from 1/2up to 1/32. This last value was found to correspond to the experimental data near the failure region, and it was reasonable not to reduce the modulus any further. Figure 27 shows variation of the function $P(\gamma_{ns})$ with the shear strain. Using function $P(\gamma_{ns})$ the circumferential strain was calculated and compared to the experimental results in Figure 18. It can be seen that a good agreement is obtained with the experimental data. The calculated longitudinal response will agree with the solid curve in Figure 17 since this data was used to define $P(\gamma_{ns})$.

In the calculations which lead to the results shown in Figure 28, the shear failure was allowed only in the four inner plies. The failure could also occur, to a much smaller extent, in the two outer plies with the helix angle of 83 degrees. Consequently, the results in Figure 28 can be considered as a first approximation. In order to establish the effect of the failure in the outer plies, the function $P(\gamma_{ns})$ from Figure 28 was used for both plies and stress analysis calculations were repeated allowing both inner and outer plies to fail. The results were only slightly different from those in which only the inner plies failed.

Once the model, which predicts the nonlinear response of this particular cylindrical configuration, has been established, it is possible to use it to examine the effect on the stress levels. One interesting result is the difference in the normal stresses in the fiber direction in the linear and the nonlinear analyses. For example, it is interesting to compare these strosses in the outer plies which carry the highest stresses. Using a pressure value of 27.58 x 100 Pa, which is close to the failure load, the ratio of the fiber stresses from the nonlinear to the linear analysis was found to be approximately 1.1. This means that the actual fiber stresses are about 10 percent higher than those predicted by the linear analysis. By the same token it may be mentioned that the fiber stresses in the inner plies are reduced by the nonlinear effects. These results are illustrated in Table VI where the fiber stresses are shown for the undamaged and the damaged situation for the six plies. Two different sets of damaged data are presented and these correspond to allowing matrix damage in the inner plies only, and then allowing both inner and outer plies to fail.

Table IV

Comparison of Fiber Stress σ_n († 106 Pa) for Undamaged and Damaged Matrix Situations

Ply Number	Undamaged Stress	Inner Plies Damaged Only	Inner & Outer Plies Damaged
1	100.6	97.3	97.2
2	99.7	95.8	95.6
3	99.0	94.9	94.9
4	97.9	93.4	93.3
5	191.7	216.3	216.9
6	189.6	214.0	214.7

It can be seen from Table IV that the damage in the outer plies produces little additional changes in the stresses.

IV CONCLUSIONS

From the analysis of the recoilless rifle configuration we can conclude that the finite-element computer programs 1,2 which have been developed are capable of detailed stress analysis of rather complex structures. Since the analysis allows for the modelling of each ply as a separate material, the interlaminar stresses, as well as individual ply stresses, are generated by these programs. These programs should be a valuable tool in future engineering analyses of composite material structures.

Two different models for describing failure of composite materials have been developed. One of these models analyzes interlaminar failure and a computer program has been developed for this model. The computer program uses a finite-element method and an iteration scheme for determining where and when failure occurs. Every time failure occurs at any point in the structure, the total equilibrium of the structure is reevaluated. The second failure model is based on matrix failure inside individual plies by transverse shear stresses. In this model the effect of failure is to reduce the transverse shear modulus of the ply. Using this model, the stress calculation can be performed by linear finite-element model by varying the material properties. The results of this model are compared with nonlinear experimental data for cylindrical six ply models. It is found that this model does predict the correct longitudinal and circumferential response.

ACKNOWLEDGEMENT

This work was sponsored by the U.S. Army Ballistic Research Laboratories, Aberdeen Proving Ground, MD, under Contract No. DAAD05-73-C-0197, as part of the Short-Range Man-Portable Antitank Weapons Technology (SMAWT) Program.

Axial Location z mm

Figure 1. Nozzle section of the recoilless rifle.

Figure 2. Center section of the recoilless rifle.

Axial Location z mm

Figure 3. Forward section of the recoilless rifle.

Finite-element grid in the I,J coordinates for the aft section. Figure 4.

Figure 6. Finite-element grid in the I,J coordinates for the forward section.

Note: Thickness magnification of 20 was used in this diagram.

Figure 7. Finite-element grid for recoilless rifle.

Axial Direction z mm

Figure 8. Internal pressure distribution

Radial Distance mm

Figure 9. Radial distribution of fiber and hoop stress at axial location z = 139.7 mm.

Figure 10. Radial distribution of fiber and hoop stresses at axial location z = 223.5 mm.

Stress : 10' Pa

Figure 11. Radial distribution of fiber and hoop stresses at axial location s = 322.5 mm

Radial Distance mm

Figure 12. Radial distribution of the magnitude of the shear stress $\sigma_{\rm RS}$ at axial location z = 139.7 mm.

Radial Distance mm

Figure 13. Radial distribution of the magnitude of the shear stress $\sigma_{\rm ns}$ at axial legation z = 223.5 mm.

Radial Distance mm

Figure 14. Radial distribution of the magnitude of the shear stress σ_{ns} at axial location z=322.5 mm.

Axial Location z mm

Figure 15. Axial distribution of axial stress, hoop stress, and maximum shear stress in the adhesive layer.

Figure 16. Axial distribution of the maximum fiber stress $\sigma_{\mathbf{n}}$ and shear stress $\sigma_{\mathbf{ns}}$.

Axial Location mm

Figure 17. Longitudinal strain measured as a function at internal pressure.

Figure 18. Circumferential strain measured as a function of internal pressure.

Figure 19. Arrangement of orthotropic plies in the test cylinder.

(

Figure 20. Experimental Test Arrangement.

Figure 21. Nondimensional slope variation with pressure

Figure 22. Axial distribution of the shear stress σ_{rz} .

Radial distribution of the fiber stress σ_n calculated by using 4 elements to represent each ply in the thickness direction. Figure 23.

Distance through the thickness mm

Figure 244. Nodal Point On Interlaminar Plane

Figure 24b. Relative Slip At The Nodal Point Following Failure

Figure 25. Simplified Computer Flow Chart Showing The Arrangement of The Iterative Schemes

Figure 26a. Cylindrical Configuration Used In The Numerical Example

Figure 26. Finite-Element Grid Used In The Numerical Calculations.

Figure 27. Macroscopic model of composite material subject to shear stress.

Figure 28. Dependence of shear modulus factor on the shear strain.

APPENDIX A

INPUT CARDS FOR INTERLAMINAR FAILURE FINITE-ELEMENT PROGRAM

TITLE CARD

Format (20A4)
Columns 1-80 TITLE (Title for particular case)

CONTROL CARD

Format (615, F5.0, 515)

Columns 1-5 NNLA (Number of nonlinear approximations; NNLA=1 for this version of the program)

6-10 NUMTC (Number of temperature cards; if -2, a constant temperature is specified)

11-15 NUMMAT (Number of different materials; 6 maximum)

16-20 NUMPC (Number of boundary pressure cards; 200 maximum)

21-25 NUMSC (Number of boundary shear cards; 200 maximum)

26-30 NUMST (Number of boundary shear cards in tangential direction; 200 maximum)

31-35 TREF (Reference temperature)

36-40 INERT (This parameter decides if inertia loads will be present, INERT=0 means zero values of axial acceleration, and angular acceleration and velocity for each load increment)

41-45 NLINC (Number of load increments with time, NLINC>1)

46-50 INCI (If INCI=0, then inertia loads for each time increment will be the same as for first increment)

51-55 INCF (If INCF-0, then surface loads for each time increment will be the same as for first increment)

56-60 IPLOT (Plot parameter, IPLOT = 1 if plot required)

MESH GENERATION CONTROL CARD

Format (515)

Columns 1-5 MAXI (Maximum value of I in mesh; 25 maximum)

6-10 MAXJ (Maximum value of J in mesh; 100 maximum)

11-15 NSEG (Number of line segment cards)

16-20 NBC (Number of boundary condition cards)

21-25 NMTL (Number of material block cards)

LINE SEGMENT CARDS

The order of line segment cards is immaterial except when plots are requested; in this case, the line segment cards must define the perimeter of the solid continuously. The order of line segment cards defining internal straight lines is always irrelevant.

Format (3(213, 2F8.3), 15)

Columns 1-3 I coordinate of 1st point

4-6 J coordinate of 1st point

7-14 R coordinate of 1st point

15-22 Z coordinate of 1st point

23-25 I coordinate of 2nd point

The same of the sa

Columns (continued)

26-28 J coordinate of 2nd point
29-36 R coordinate of 2nd point
37-44 Z coordinate of 2nd point
45-47 I coordinate of 3rd point
48-50 J coordinate of 3rd point
51-58 R coordinate of 3rd point
59-66 Z coordinate of 3rd point
67-71 Line segment type parameter

If the number in column 71 is

0 Point (input only 1st point)

1 straight line (input only 1st and 2nd points)

2 straight line as an internal diagonal (input only 1st and 2nd points)

3 circular arc specified by 1st and 3rd points at the ends of the arc and 2nd point at the mid-point of the arc.

4 circular arc specified by 1st and 2nd points at the ends of the arc with the coordinates of the center of the arc given as the 3rd point (delete I and J for 3rd point).

5 straight line as a boundary diagonal for which I of 1st point is minimum for its row and/or I of 2nd point is minimum for its row (input only 1st and 2nd points).

6 straight line as a boundary diagonal for which I of 1st point and/or 2nd point is maximum for its row (input only 1st and 2nd points).

NOTE: In specifying a circular arc, the points are ordered such that a counterclockwise direction about the center is obtained upon moving along the boundary.

BOUNDARY CONDITION CARDS

Each card assigns a particular boundary condition to a block of elements bounded by II, I2, J1, J2. For a line I1 \pm I2 or J1 = J2. For a point I1 \pm I2 and J1 = J2.

Format (415, I10, 5F10.0)

Columns 1-5 Minimum I

6-10 Maximum I

11-15 Minimum J

16-20 Maximum J

21-30 Boundary condition code

31-40 Radial boundary condition, XR

41-50 Axial boundary condition, XZ

51-60 Tangential boundary condition XT

If the number in Columns 21-30 is

- XR is the specified R-load and XZ is the specified Z-load and XT is the specified T-load
 - XR is the specified R-displacement and
- XZ is the specified Z-load and 1 XT is the specified T-load
 - XR is the specified R-load and
- 2 XZ is the specified Z-displacement and
 - XT is the specified T-load
 - XR is the specified R-displacement and
- 3 XZ is the specified Z-displacement and
 - XT is the specified T-load
 - XR is the specified R-load and
- 4 XZ is the specified Z-load and
 - XT is the specified T-displacement
 - XR is the specified R-displacement and XZ is the specified Z-load and
- 5
 - XT is the spec. fied T-displacement
 - XR is the specified R-load and
- XZ is the special of Z-displacement and 6
 - XT is the specified T-displacement XR is the specified R-displacement and
- 7 XZ is the specified Z-displacement and
- XT is the specified T-displacement

NOTE: All loads are considered to be total forces acting on one radian segment.

MATERIAL BLOCK ASSIGNMENT CARD

Each card assigns a material definition number to a block of elements defined by the I, J coordinates.

Format (515, 2F10.0, 2I5)

- Columns 1-5 Material definition number (1 through 6)
 - 6-10 Minimum I
 - 11-15 Maximum I
 - 16-20 Mirdinum J
 - 21-25 Meximum J
 - 26-35 Material principal property inclination angle BETA in R-Z plane
 - 36-45 Material principal property inclination angle APLHA in N-T plane
 - 46-50 IANG (If IANG = 0, then ALPHA is same for total material block. If IANG = 1, the ALPHA varies in sign in the I direction from element to element every NANG elements. This will allow for equal but opposite helical angles.)
 - 51-55 NANG (Number of elements in the I direction with the same ALPHA)

PLOT TITLE CARD*

Format (20A4)

Columns 1-80 Title (Title printed under each plot)

PLOT GENERATION INFORMATION CARD*

Format (2F10.0)

Columns 1-10 RMAX (Maximum r coordinate of mesh) 11-20 ZMAX (Maximum z coordinate of mesh)

*NOTE: Use only if IPLOT = 1 (plot required)

TEMPERATURE FIELD INFORMATION CARDS

If NUMTC in columns 6-10 of the CONTROL CARD is greater than 1, the temperature field is given on cards. One card must be supplied for each point for which a temperature is specified.

Format (3F10.0)

Columns 1-10 R coordinate

11-20 Z coordinate

21-30 Temperature

If NUMTC in columns 6-10 of the CONTROL CARD is -2, a constant temperature field is specified; the value is given on a single card.

Format (F10.0)

Columns 1-10 Temperature

MATERIAL PROPERTY INFORMATION CARDS

The following group of cards must be specified for each material (maximum of 6).

a. MATERIAL IDENTIFICATION CARD

Format (215, 2F10.0)

Columns 1-5 Material identification number

6-10 Number of temperatures for which properties are given (12 maximum)

11-20 Mass density of material (if required)

21-30 Thermal expansion parameter (If 1, free thermal expansions on the material property cards; otherwise, coefficients of thermal expansion are on the material property cards.)

b. MATERIAL PROPERTY CARDS

Format (7F10.0)

Columns 1-10 Temperature

11-20 Modulus of elasticity, EN

21-30 Modulus of elasticity, ES

31-40 Modulus of elasticity, E

Columns (continued)

41-50 Poisson's ratio, v_{NS} 51-60 Poisson's ratio, v_{NT} 61-70 Poisson's ratio, v_{ST}

Second Card

Format (6F10.0)

 $\begin{array}{ccccc} \text{Columns} & 1\text{--}10 & \text{Shear Modulus } G_{NS} \\ & 11\text{--}20 & \text{Shear Modulus } G_{ST} \\ & 21\text{--}30 & \text{Shear Modulus } G_{TN} \\ & 31\text{--}40 & \alpha_n T \text{ or } \alpha_n \\ & 41\text{--}50 & \alpha_S T \text{ or } \alpha_S \\ & 51\text{--}60 & \alpha_T T \text{ or } \alpha_T \end{array}$

CRACK ITERATION CARD

Format (2110, F10.3)

Columns 1-10 NSLIP number of iteration steps at each node to satisfy local equilibrium and calculate slip components.

11-20 NEQL number of times that the equilibrium of the total structure is to be recalculated.

21-30 TFAIL the megalitude of the shear failure stress between plies

CRACK DIRECTION CARD

Format (2I10)

Columns 1-10 NCBI number of blocks of nodal points where slip can occur in I direction

11-20 NCBJ number of blocks of nodal points where slip can occur in J direction

FAILURE BLOCK DEFINITION CARDS

Format (4I10)

This card is to be repeated a number of times equal to the sum of NCBI and NCBJ. These cards define blocks of nodes in the I, J coordinates where failure can occur either in the I or J directions.

Columns 1-10 NIMIN minimum I in block

11-20 NIMAX maximum I in block

21-30 NJMIN minimum J in block

31-40 NJMAX maximum J in block

INERTIA LOAD CARD

Format (3F10.0)

Starting with this input card and including the boundary force cards, this data is to be inputted as a block for each load step, that is NLINC times. There are the following exceptions to this:

- a) If INERT = 0, then this card is to be omitted completely (no inertia load).
- b) If INCI = 0, then this card is not repeated but appears in first block only (the inertia loads are constant for each load step).
- c) If INCF = 0, then the following boundary pressure and shear cards are to be given only for the first block and not repeated again (the pressure and shear loads are constant for each load increment).

Columns 1-10 ACELZ (axial acceleration)

11-20 ANGVEL (angular velocity)

21-30 ANGACC (angular acceleration)

BOUNDARY PRESSURE CARDS

One card is required for each boundary element which is subjected to a normal pressure, that is the number of these cards is NUMPC for each load increment.

Format (315, F10.0)

Columns 1-5 Nodal point M

6-10 Nodal point N

11-20 Normal pressure

As shown in the figure below, the boundary element must be on the left when progressing from M to N. Surface normal tension is input as a negative pressure.

BOUNDARY SHEAR CARDS

One card is required for each boundary element which is subjected to surface shear, that is, the number of these cards is NUMSC for each load increment.

Format (215, F10.0)

Columns 1-5 Nodal point M 6-10 Nodal point N 11-20 Surface shear,

As shown in the figure below, the boundary element must be on the left when progressing from M to N. The positive sense of the shear is from M to N.

BOUNDARY TRANSVERSE SHEAR CARDS

One card is required for each boundary element whish is subject to transverse shear, that is the number of these cards is NUMSC for each load increment.

Format(215, F10.0)

Columns 1-5 Modal point M 6-10 Modal point N 11-20 Surface transverse shear

APPENDIX B

PROGRAM LISTING FOR INTERLAMINAR FAILURE ANALYSIS

```
LEVEL
      21
                          MAIN
                                            DATE = 75066
                                                                  14/36/25
C
      FINITE ELEMENT STRESS ANALYSIS OF AXISYMMETRIC. LAYERED
C
      SOLIDS WITH ORTHOTROPIC, TEMPERATURE-DEPENDENT MATERIAL
C
      PROPERTIES USING STRAIGHT SIDED ELEMENTS
C.*
     IMPLICIT REAL+8(A-H.O-Z)
      INTEGER CODE
      CCMMON/BASIC/ACELZ.ANGVEL.ANGACC.TREF.VOL.NUMNP.NUMEL.NUMPC.NUMSC.
     1 NUMST
      CCMMCN/MATP/RO(6), E(12,16,6), EE(16), ADFTS(6)
      COMMON/ARG/FPR(5),ZZZ(5),RR(4),ZZ(4),S(15,15),P(15),TT(6),
     1H(6,15), CRZ(6,6), XI(10), ANGLE(4), SIG(18), EPS(18), N
      CCMMCN/NPDATA/ R(200),CDDE(200),XR(200),Z(200),XZ(200),
     1NPNUM(10,20),T(200),XT(200)
      CCMMCN/ELDATA/ BETA(200), EPR(200), PR(20), SH(20), IX(200,5), IP(20),
     1JP(20), IS(20), JS(20), ALPHA(200), IT(200), JT(200), ST(20)
      CCMMCN/SOLVE/ X(888).Y(888).TEM(888).NUMTC.MBAND
      CTMMON/TD/ IMIN(20).IMAX(20).JMIN(10).JMAX(10).MAXI.MAXJ.
     INMTL, NBC
      CCMMCN/CENVRG/IDDNE
      COMMON/PLANE/NPP
      CCMMCN/FESULT/BS(6.15).D(6.6).C(6.6).AR.BB(6.9).CNS(6.6)
      COMMON/CIT/NEQL .NSLIP, TCRACK, ISLIP, INP, NSKIP
      COMMCN/DATA1/RTN(200), RST(200), RNN(200)
      COMMON/DATA2/JFAIL(200), TB(200, 12), ICP(200), IAD(200, 4)
      DIMENSION TITLE (20)
      DIMENSION TO(100.12)
C *
      * * * * * * * * * * * *
      READ AND WRITE CONTROL INFORMATION
C
     * * * * * * * * * * * * * *
   50 PEAD(5.1000.END=920)TITLE.NNLA.NUMTC.NUMMAT.NUMPC.NUMSC.NUMST.TREF
     1. INERT. NLING, INCT, INCF, I PLOT, ICRACK
      WRITE(6,2000)TITLE, NNLA. NUMTC, NUMMAT, NUMPC, NUMSC, NUMST, TREE, INERT.
     INLINC
      WRITE (6,4000) ICPACK
 4000 FORMAT(3X+15)
      NSKIP=C
      NODEO
      GENERATE FINITE ELEMENT MESH
C* * * * * * * * * * * * * *
  100 CALL MESH
      IF (IPL)T.EO.1) CALL MPLCT
     . . . . . . . . . . . . . . .
      READ AND WEITE TEMPERATURE DATA
103 IF (NUMTC. ED. 0) GO TO 440
```

IF(*UMTC.GT.0) READ(5,1001) (X(I),Y(I),TEM(I),I=1,NUMTC)

TF(NUMTC.EO.-2) CALL TEM2(NUMNP)

```
TF(NUMTC.EQ.-2) GO TO 440
      MPRINT=0
      DO 210 T=1, NUMTC
      IF (MPRINT.NE.0) GO TO 200
      WRITE(6, 2001)
      MPRINT=59
  200 MORINT-MPSINT-1
  210 WRITE(6,2002) X(I),Y(I),TEM(I)
      MPRINT=0
      D7 230 N=1.NLMAF
      IF(MPRINT.NE.O) GO TO 220
      WRITE(6,2003)
      VORTHT=59
  200 MORTHTEMORINITAL
      CALL TEMP(F(N),Z(N),T(N))
  230 NAITE (6, 2004) N,R(N),Z(M),T(N)
  440 "PRINTED
      DT 460 N=1, NUMEL
      1F (MPF (NT. 1 F. 0) G1 T0 450
      W917F(6,2008)
      MPRINT=59
  450 NODINTENDELL T-1
      I != 'X(!:, 1)
      1J=[X(N.2)
      KK=[X(N,3)
      LL=IX(N,4)
(,
      TEM IS TEMPOPARY STORAGE FOR ELEMENT TEMPERATURES
ſ
      TEM(N)=(T(TT)+T(IJ)+T(KK)+T('L))/4.0
  460 WPITE (6,2009) N. ([X(N,T), I=1,5), BETA(N), ALPHA(N), TEM(N)
      07 470 F=1.NUMEL
  470 T(K)=1F4(K)
FAD AND WESTE MATERIAL PROPERTIES
  GOO CONTENIE
      TE (MINMAT. [O.O) GO TO 600
      TAMALIN, I = M CIP CO
      PEAD(5,1004) MIYPE, (NT, RO(MTYPE), ADETS(MTYPE))
      POITE (6.2010) MTYPE, NT, RO(MTYPE)
      $ (AD (5,1005) ((E(I,J, MTYPE),J=1,14), [=1,NT)
      TF(ACETS(MTYPE).MF.1.) WRITE(6,2011)((E(I,J,MTYPE),J=1,13),I=1,NT)
      TE(\TETS(\TYPE).FO.1.) \\ \PRITE(6,2012)((E(I,3,MTYPE),J=1,13),I=1,NT)
      D7 510 T=17,12
      D7 510 J=1.16
  STO E(I.J, MTYPE) = F(NT, J, MTYPE)
```

```
C
     SET INTERLAMINAR SLIP DATA
C
      IF (ICRACK.EQ.O) GO TO 509
      CALL SET
 509
     CONTINUE
      DO 501 N=1, NUMEL
      DO 501 I=1.12
      TE(N.I)=0.0
DETERMINE BANDWIDTH, INITIALIZE ELASTIC-PLASTIC RATIO,
C
      AND CONVERT BETA FROM DEGREES TO PADIANS
(* * * * * * * * * * * * * * * * * *
      J=0
      DO 710 N=1.NUMEL
      no 710 I=1,4
      DO 710 1=1.4
      KK=IABS(TX(N,I)-IX(N,L))
      IF(KK.GE.J) J=KK
  710 CONTINUE
      M3AND=3*J+3
      00 720 N=1.NUMEL
      EPR (N)=1.
      ALPHA(N) = ALPHA(N)/57.29578
  720 BETA(N)=BETA(N)/57.29578
      DO 900 NL=1.KLINC
      WRITE(6, 2030) NL
      ACEL 7=0.0
      ANGVEL=0.0
      ANGACC=0.0
      IF(INEPT .FO. 0) GO TO 511
      IF(NL .NF. 1 .AND. INCI .EQ. 0) GO TO 511
      READ(F, 1030) ACELZ, ANGVEL, ANGACC
  511 CONTINUE
      WRITE(6,2031) ACELZ, ANGVEL, ANGACC
     * * * * * * * * * * * * * * * * * * * *
      READ AND WRITE PRESSURE AND SHEAR BOUNDARY CONDITIONS
      * * * * * * * * * * * * * * * * * * *
      IF(NL .NE. 1 .AND. INCF .EO. 0) GO TO 700
  600 IF(NUMPC.EQ.O) GD TO 630
      MPRINT=0
      D7 620 L=1, NUMPC
      IF(MPRINT.NE.O) GO TO 610
      W917E(6,2013)
      MPRINT =58
  610 MORINT=MPRINT-1
      READ(5,1006) IP(L), JP(L), PR(L)
```

```
620 WPITE(6,2014) [P(L), JP(L),PR(L)
 630 (F(N9486.En.C) 60 TO 701
      MPRINT=0
      07 650 L=1, NUMSC
      IF(MPRINT.NE.O) GO TO 640
      WRITE(6.2015)
      MPD THT=58
 640 MORTNT=MPFINT-1
      ?EAD(5,1006) IS(L), JS(L), SH(L)
 450 WPITE (6, 2014) IS(L), IS(L), SHIL)
  701 (F(NUMST.FO.O) GO TO 700
      MPRINT=0
      DD 680 L=1.NLMST
      IF (MPRINT.NE.O) OF TO 670
      WRITE(6, 2025)
      MD2 117 =59
 670 MUDINIENDEINI-1
      READ(5,1006) ["(L),JT(L),ST(L)
 (3) WRITE(6,2014) IT(L), JT(L), ST(L)
 700 CHITINUE
      IF (IUFACK 200.0) AT TO 741
      DO ODO INPELIATOR
     CHATTMUE
 741
      D7 721 N= 1, NUMEL
 7:1
      IX(N,5)=IABS(IX(N,5))
      FORM STIFFNESS MATRIX
0
      CALL STIFF
C
      SILVE FIR DISPLACEMENTS
C
(
      CALL SOLV
      COMPLITE STRESSES
C
      CALL STEESS
      CLIP STERATTEN
      IF (ICRACY . EO. O) SO TO 731
      n= 729 L=1.151 TF
      IF(1.GT.1) OF TI 723
      03 723 T=1, MUTE
      02 723 3-1,12
      T(1,1) = T(1,1)
 723 CHITINIE
      CALL TTERAT
```

```
TF(L.NE.NSLIP) GO TO 729
     DO 724 I=1. NUMEL
     DO 724 J=1,12
     TB(I,J)=TD(I,J)+(TB(I,J)-TD(I,J))+2.
724
. 729
     CONTINUE
 731
     CONTINUE
  900 CONTINUE
  910 GO TO 50
 1000 FORMAT(20A4/615,F5.0,615)
 1001 FORMAT(3F10.0)
 1004 FORMAT (215,2F10.0)
 1005 FORMAT(7F10.0)
 1006 FORMAT (215,F10.0)
 1030 FORMAT(3F10.0)
 2000 FORMAT (2H1 ,20A4/
     1 33HO NUMBER OF APPROXIMATIONS----- 14/
     2 33HO NUMBER OF TEMPERATURE CARDS--- 14/
     3 33HO NUMBER OF MATERIALS-----I4/
     4 33HO NUMBER OF PRESSURE CARDS-----14/
     7 3340 REFERENCE TEMPERATURE-----E12.4/
     8 33HO NUMBER OF THERTIA CARDS------14/
     9 33HG NUMBER OF LOAD INCREMENTS---- 14/1
 2001 FGPMAY (1H1,13X,1HR,14X,1HZ,14X,1HT)
 2002 FORMAT (3F15.3)
 2003 FORMAT (35H1 N
                                     Z
                                                 TI
 2004 FORMAT (15.2F10.4,F10.0)
 2008 FORMAT (74H) EL !
                                       MATERIAL
                                                  ANGLE BETA
                                                               ANGLE A
             TEMPERATURE)
     1 L PHA
 2009 FORMAT (15.414.18.F11.1.2F13.3)
 2010 FORMAT (1H1, MATEPIAL IDENTIFICATION NUMBER = 1,12/
     11H , 'NO. OF MATERIAL TEMPERATURE CARDS =1,12/
     21H , MASS DENSITY =', E15.7)
 2011 FORMAT (1H , TEMPERATURE =1, E15.7/
     11H , MODULUS OF FLASTICITY-EN =1,E15.7/
     21H , MODULUS OF ELASTICITY-ES =1, E15.7/
     31H . MODULUS OF ELASTICITY-ET = 1,E15.7/
     41H . 'POISSON RATIO-NUNS =',E15.7/
     51H , POISSON PATTO-NUNT = FE15.7/
     61H , 'POISSON RATIO-NUST =',E15.7/
     714 . SHEAP MCDULUS-GNS = 1.E15.7/
     RIH , SHEAP MODULUS-GST = 1,E15.7/
     SIH . SHEAP MCDULUS-GTN = 1.EL5.7/
     11H , COEFFICIENT OF THEF WAL EXPANSION-AN =1, E15.7/
     21H , 'COEFFICIENT OF THERMAL EXPANSION-AS =', E15.7/
     31H . COEFFICIENT OF THEFMAL EXPANSION-AT = 1, E15.7/1
 2012 FORMAY (1H . TEMPERATURE #1, E15.7/
```

```
11H . MODULUS OF ELASTICITY-EN = 1/E15.7/
   21H . MODULUS OF ELASTICITY-ES = '.EIS.7/
   31H . MODULUS OF ELASTICITY-ET = +E15.7/
   41H . POISSON PATIO-NUNS = ,E15.7/
   51H , POISSON RATIO-NUNT = '.E15.77 *
   61H , PCISSON RATIO-NUST =1,E15.77
   71H . SHEAP MODULUS-GNS * . E15.7/
   81H . SHEAR MODULUS-GST = . E15.77
   91H , SHEAP MCDULUS-GTN = , E15.7/
   11H . FREE THERMAL STRAIN-FN = . E15.7/
   21H . FREE THEPMAL STRAIN-FS =1,E15.7/
   31H , FREE THERMAL STRAIN-FT = , E15.7/)
2013 FORMAT (30H1 PRESSURE BOUNDARY CONDITIONS/20H
2014 FORMAT (215,F10.1)
2015 FORMAT (27H1 SHEAP BOUNDARY CONDITIONS/17H
                                                         J SHEAR)
                                                   I
2016 FORMAT (26H THE SYSTEM CONVERGED IN 12, 11H ITERATIONS)
2017 HOPMAT (33H) THE SYSTEM DID NOT CONVERGE IN 12,11H ITERATIONS)
2024 FORMAT (43HO THE AXISYMMETRIC OPTION NAS BEEN SELECTED)
2025 FORMAT(30H) TORSION BOUNDARY CONDITIONS/17H
2030 FORMAT (1H1. LCAD STEP=1.14)
2031 FORMAT(1HO . MAXIAL ACCELERATION = . E12.4/
    1140 + AMGULAR VELOCITY
                               =' ,E12.4/
    ?1HO . 'ANGULAR ACCELERATION=', E12.4)
 920 STOP
     END
```

CATION O 28		MMON BEDCK Encation 8 20	/BASIC / MAP SYMROL ANGACC NUMPC		SYMBOL TREF NUMSC	LOCAT
CATTEN			/MATP / MAP SUBDL SE		SYMBOL AOFTS	LOCAT 248
CATION	SAMBLE	MMCN BLOCK LOCATION	SYMBOL	LOCATION		LOCAT
0 798 C49	122 77 570	28 810 CAO	RR H EPS	50 840 030	ZZ CRŽ N	81: DC:
CATION	SYMBOL CODE	"MEN BLOCK LOCATION 640	/NPOATA / MAP SYMBOL XR	=		LOCAT

G LEVEL	21	MAIN		DATE = 7506	6 14	/36/2
C* * * :		* * * * * *	*****	*****	* * * * * *	* * *
		NGLE (R,Z,RC, L+8(A-H,O-Z)	ZC, ANG)			
C* * *	* * * * * *	* * * * * *	* * * * *	* * * * *	* * * * * *	* * *
. C F	IND ANGLE O	F INCLINATION	BETWEEN O	AND 2*PI	•	
C* * *	* * * * *	* * * * * *	* * * * * *	* * * * * *	* * * * * *	* * *
P	1=3.1415927	1_				
	1= (Z-2C)				;	
	2=(R-RC)			•		
		1.GT-1.E-8) G	0 TO 100	•		
	NG=PI/2.	or and residual control				
		-8) RETURN				
-	NG=-ANG					
	ETURN					
C* * *			* * * * * *	****		* * *
	LLOW CIRCLE	TC CROSS AXI	5			
C* * *	* * * * * * *				* * * * * *	T T T
	NG=DATAN2(D	11,021				
	ETURN					
•	ND					
	11					
		IBPROGRAMS CAL			ev4064	
CATION	SYMBCL	LOCATION	SYMBOL	LOCATION	SYMBOL	LOCA
AO		••				
	SC	ALAR MAP				
CATION	SYMBOL	LOCATION	SYMBOL	LOCATION	SYMBOL	LOCA.
80	DI	88	Z	CO	ZC	•
DB	RC	E0	ANG	E8		
	61	TATEMENT NUMBE	D MAD			
CATION		T LOCATION		T LOCATION	STATEMENT	LOCA
ICC	3	1CC	4	104	5	1
200	8	200	9	222	10	ž
242		200	• •	-7-		_

IN EFFECT* NOID, BCD, SCURCE, NOLIST, NODECK, LOAD, MAP
IN EFFECT* NAME = ANGLE , LINECHT = 50
ICS* SOURCE STATEMENTS = 13, PROGRAM SIZE = 586
ICS* NO DIAGNOSTICS GENERATED

```
SUBROUTINE CIRCLE(ANGI, DELPHI, RSTRT, ZSTRT, RC, ZC, I, J)
         IMPLICIT REAL *8 (A-H. O-Z)
         INTEGER CODE
        CGMMON/TD/ IMIN(20), IMAX(20), JMIN(10), JMAX(10), MAXI, MAXJ,
        INMTL . NBC
         CCMMON/NPDATA/ R(2001,COBE(2001,XR(200),Z(200),XZ(200),
       INPNUM(10,20),T(200),XT(200)
         DIMENSION AR (10,20), AZ(10,20)
         EQUIVALENCE (R(1), AR), (Z(1), AZ)
  0.*
       * * * * * * * * * * * * * * * * *
         FIND INTERSECTION OF LINE AND CIRCLE = NEW R
  C
  C.*
         ANG1=ANG1+DELPHI
         PR = DSQRT ((RSTR'-RC) * *2+(ZSTRT-ZC) * *2)
         AR(I+J)=BC+RP+DCOS(ANG1)
         AZ (T.J)=ZC+RR+DSIN(ANGI)
         RETURN
         FND
                   COMMON BLOCK /TD
                                           / MAP SIZE
                                                           100
CATION
             SYMBOL
                        LOCATION
                                       SYMBOL
                                                  LOCATION
                                                                 SYMBOL
                                                                            LOCAT
   0
             IMAX
                            50
                                       JMIN
                                                      AO
  F4
             NNTL
                            F8
                                       NBC
                                                      FC.
                   COMMON BLOCK /NPDATA / MAP SIZE
ICAT TON
             SYMBOL
                        LCCATION
                                       SYMBOL
                                                  LOCATION
                                                                 SYMBOL
                                                                            LOCAT
             AP
                                       CODE
                                                     640
                                                                               96
   ù
                             0
                                                                XR
             XZ
                                       NPNUM
                                                    1C20
                                                                              1F4
 FAO
                          15E0
                    SUBPROGRAMS CALLED
CATION
             SYMBUL
                                                  LOCATION
                        LCCATION
                                       SYMBOL
                                                                 SYMBOL
                                                                            LOCAT
  90
             DCOS
                            AO
                                       DSIN
                                                      A4
                    SCALAR MAP
             SYMBOL
                                       SYMBOL
                                                  LOCATION
                       LOCATION
                                                                 SYMBOL
                                                                            LOCAT
  44
             DELPHI
                                       RR
                                                      63
                                                                 RSTRT
                            CO
                                                      FO
                                       1
  FO
             2 C
                            E8
                    STATEMENT NUMBER MAP
CATTON
             STATEMENT LOCATION
                                       STATEMENT LOCATION
                                                                 STATEMENT LOCA'
 276
                  A
                           206
                                                     212
                                                                      10
                                                                               2:
 242
```

```
SUBROUTINE INTER
    IMPLICIT REAL+8 (A-H, D-Z)
   COMMON/ARG/RRR(5),ZZZ(5),RR(4),ZZ(4),S(15,15),P(15),TT(6),
   14(6,15),CRZ(6,6),XI(10),ANGLE(4),SIG(18),EPS(18),N
   COMMON/PLANE/NPP
   DIMENSION XM(7),R(7),Z(7),XX(9)
   DATA XX/3+.1259391805448,3*.1323941527884,.225,
   1 .696140478028, .410426192314/
   P(7)=(RR(1)+RR(2)+PR(3))/3.
    Z(7) = (ZZ(1)+ZZ(2)+ZZ(3))/3.
   DO 100 I=1,3
    J=1+3.
   P(I)=XX(8)+QR(I)+(1.0-XX(8))+R(7)
    R(J)=XX(9)*PP(I)+(1.0-XX(9))*R(7)
    Z(!)=XX(8)+ZZ(!)+(1.0-XX(8))+Z(?)
100 Z(J) = XX(9) + ZZ(T) + (1.0-XX(9)) + Z(T)
    DO 200 I=1.7
200 XM(I)=XX(I)+R(!)
    DO 300 I=1.10
300 XI(I)=0.0
    AREA= .5+(RP(1)+(ZZ(2)-ZZ(3))+RR(2)+(ZZ(3)-ZZ(1))+PP(3)+(ZZ(1)
   1 - 27(2))
    IF(NPP.NE.O) GO TO 600
    D7 400 1=1.7
    XI(1)=XI(1)+XM(I)
    XI(2)=XI(2)+XM(1)/R(I)
    XI(3)=XI(3)+XM(1)/(R(1)**2)
    XI(4)=XI(4)+XM(I)+Z(I)/R(I)
    XI(5)=XI(5)+XM(I)+7(I)/(P(T)++2)
    XI(6)=XI(6)+XM(I)+(Z(I)++2)/(R(I)++2)
    XI(7)=XI(7)+XM(I)+P(I)
    XI(8)=XI(8)+XM(I)*Z(I)
    XI(9)=XI(9)+X*(I)*(9(I)**2)
400 XI(10)=XI(10)+X*(I)*R(I)*Z(I)
    D7 500 I=1,10
500 XI(I)=XI(I)+ARFA
    RETURN
600 XI(1)=ARFA
    XI(7)=P(7)+AREA
    XI(R)=Z(T)+AREA
    RETUPN
    END
```

	C ·	MMON BLOCK /A	RG / MAP	SIZE	DC4	
OCATION	SYMBOL	LOCATION	SYMBOL	LOCATION	SYMHOL	LACA
0	222	28	RR	50	22	
798	TT	810	Н	840	CRZ	8

07 10 T=1,4

```
IF(N.EQ.O) GC TC 10
      ANGS=ANGS+BETA(N)
10
      CONTINUE
      ANGS=ANGS/AV
      DO 11 I=1.3
      DN 11 J=1,2
11
      0.0=(L, ])T
      T(1,1)=DSIN(ANGS)
      T(2,1)=DCOS(ANGS)
      T(3,2)=1.0
      DO 14 1=1,4
      N=IAD(NP, 1)
      TF(N.EQ.O) GC TC 14
      CALL QUAD
      IX(N,5)=-IX(N,5)
      DO 100 K=1,4
      11=3+K
      JJ=3*1X(N,K)
      P(II-2)=B(JJ-2)
      P(II-1)=B(JJ-1)
100
      P(II) = B(JJ)
      DO 231 I!=1,3
      DO 231 JJ=1.3
  231 54(11,13)=5(11+12,33+12)
      CALL SYMINV(54,3)
      DC 232 JI=1,12
      07 232 JJ=1+3
  232 S2(*T, IJ)=S(II, IJ+12)
      D7 733 [!=1.3
      99 233 IJ=1,12
  233 S3(TI,JJ)=S(II+12,JJ)
      DO 240 L=1,12
      DO 240 J=1,3
      S5(L, J) = 0.000
      DO 240 K=1,3
  240 S5(L,J) = S5(L,J) + S2(L,K) + S4(K,J)
      DO 241 L=1,12
      DD 241 J=1,12
      S6(L,J)=0.0D0
      DO 241 K=1,3
  241 S6(L,J) = S6(L,J) + S5(L,K) + S3(K,J)
      DO 235 II=1,12
      DO 235 JJ=1,12
  235 S(II, JJ)=S(II, JJ)-S6(II, JJ)
C
      DO 13 !!=1,12
      PQ(I,II)=P(II)+TB(N,II)
```

```
DO 13 JJ=1,12
     (LL,II) 2= (LL,II,I)02
13
     NS=ICR(NP)
14
     CONTINUE
     IF(NS.E0.2) GO TO 24
     DO 23 K=1.3
     FM(1,K)=0.0
     FM(2.K)=0.0
     DO 21 I=1,2
     NN=3*(I-1)+K
     00 20 M=1.12
20
     FM(1,K)=FM(1,K)+SO(I,NN,M)*PO(I,M)
     07 21 J=1.2
     YM(K, J)=0.0
     00 21 L=1,3
     MO=3*(I-1)+L
     Y^{\vee}(K,J)=Y^{\vee}(F,J)+SQ(I,NN,NQ)*T(L,J)
21
     00 23 1=3,4
     Milt=3*(:-1)+K
     07 22 4=1.12
     FM(2,K)=FM(2,K)+SO(1,NN,M)*PQ(1,M)
22
     07 23 3=1,2
     ZM(K.J)=0.0
     Dr 23 L=1,3
     MO=3*(I-1)+L
     ZM(K,J) = ZM(K,J) + SO(I,NN,NQ) * T(L,J)
23
     GO TO 29
24
     DO 28 K=1.3
     F4(1.K)=0.0
     F417,K1=0.0
     00 26 1=1,4,3
     MN=3+(1-1)+K
     DO 25 V=1 12
25
     FM(1,K)=Fm(1,K)+SO(1,NN,M)*PQ(I,M)
     DO 26 1=1.2
     A.. (K. 1)=0.0
     97 26 L=1.3
     MO=3*(T-1)+L
24
     Y4(K,J)=Y1:(K,J)+S0(T,NN,NQ)+T(L,J)
     D7 28 1=2.3
     NA=3+(1-1)+K
     DO 27 M=1.12
     F4(2,K)=FM(2,K)+SQ(1,NN,M)+PQ(1,M)
27
     07 28 J=1.2
     I4(K.1)=0.0
     1)7 28 L=1.3
     NQ=3+(1-11+L
     ZM(K,J)=ZM(W,J)+SO(J,NN,NG)+T(L,J)
28
```

```
29
     CONTINUE
     AU(1,1)=YM(3,2)
     AU(1,2)=-YM(1,2)+T(1,1)-YM(2,2)+T(2,1)
     AU(2,1)=-YM(3,1)
     AU(2,2) = YM(1,1) + T(1,1) + YM(2,1) + T(2,1)
     BU(2) =-FM(1.3)
     BU(1)=-FM(1,1)+T(1,1)-FM(1,2)+T(2,1)
     DET=AU(1,1) +AU(2,2)-AU(2,1)+AU(1,2)
     DO 31 I=1,2
     SU(1)=0.0
     DO 31 J=1.2
31
     SU(1)=SU(1)+AU(1,J)+BU(J)/DET
     AL(1,1)=ZM(3,2)
     AL(1,2)=-ZM(1,2)+T(1,1)-ZM(2,2)+T(2,1)
     AL(2,1)=-ZM(3,1)
     AL(2,2) = ZM(1,1) + T(1,1) + ZM(2,1) + T(2,1)
     BL(2)=-FM(2,3)
     BL(1)=-FM(2,1)+T(1,1)-FM(2,2)+T(2,1)
     DET=AL(1,1)*AL(2,2)-AL(2,1)*AL(1,2)
     DO 32 1-1.2
     SL(1)=0.0
     DO 32 J=1.2
32
     SL(I)=SL(I)+AL(I,J)*BL(J)/DET
     DO 35 I=1,3
     TNU(1)=0.0
     TNL (1)=0.0
     DO 35 J=1.2
     TNU(I)=TNU(I)+T(I,J) *SU(J)
     TNL(I)=TNL(I)+T(I,J)+SL(J)
     CONTINUE
35
     IF(ICR(NP).EQ.2) GO TO 45
     00 43 1=1,4
     00 4i J=1,12
     DM(I,J)=0:0
41
     DO 43 J=1.3
     NJ=3+(1-1)+J
     TF(1.GT.2) GO TC 42
     CL)UNT=(LN,I)MO
     GO TO 43
42
     DM(I,NJ)=TNL(J)
     CONTINUE
43
     GO TO 49
     DO 48 I=1.4
     D7 46 J=1.12
46
     DM(1.J)=0.0
     D7 48 J=1,3
     NJ=3+(I-1)+J
     IF(I.EQ.2.CR.I.EQ.3) GD TO 47
```

G LEVEL	21	ITE	RAT	DATE = 75066	.= 111	14/36/2
47	DM(I.NJ)=TNU(J CO TO 48 DM(I.NJ)=TNL(J					
48 49	CONTINUE CONTINUE CO 62 I=1.4		a company of the same of the s		(th) w	
· -	N=IAD(NP,I) IF(N.EQ.O) GC	TO 62	Common and their residence was a second section of the section of the second section of the sec	and the second distribution of the second se	who	<u>. </u>
61	TB(N,J)=TB(N,J	(L+I)MC+(I	/2.0			
900 C	CONTINUE RETURN END	<u> 2</u>			· · · · · · · · · · · · · · · · · · ·	
	CUNN	ICN BLOCK				
PCATION 0	SYMBOL ZZZ	I CCATION 28	SYMBOL RR	LOCATION 50	SYMBOL	FOCA.
79H	TŢ	810	, , H	840	CRZ	В
CAO	SIG	CAO	EPS	D30	N	D ₁
CATION		LOCATION	/SOLVE / MAP SYMBOL	SIZE 5348 LOCATION	SYMBOL	LOCA
o	A	240	NUMTC	5340	MBAND	53
	CCMN	ION BLOCK	/PASTC / MAP	SIZE 3C		
TEATITAL	SYMBOL	LCCATION	SYMBOL	LOCATION	SYMBOL	LOCA
) 28	ANGVEL NUMEL	8 2C	ANGACC NUMPC	10 30	TREF NUMSC	
	2.0	2.0		# ·		
		ON BLOCK			A	
CATICN	SYMBOL CODE	LOCATION 640	SYMBOL XR	LOCATION 960	SYMBUL Z	LOCA
1020	F	1F 40	XT	2580		
	CCNN	ION BLOCK	/ELDATA / MAP	SIZE 28CO		
CATION	SYMBOL	LOCATION	SYMBOL	LOCATION	SYMBOL	LOCA
ე 1060	Jb E 5b	640 1080	PR IS	C80 1E00	JS JS	0 1E
7410	JF JT	2800	ST	2820	43	1.

```
SUBROUTINE MESH
     IMPLICIT REAL+8(A-H, 0-Z)
      INTEGER CODE
      DIMENSION AR(10,20), AZ(10,20), NCODE(10,20)
     COMMON/TD/ IMIN(20), IMAX(20), JMIN(10), JMAX(10), MAXI, MAXJ,
     INMTL, NBC
     CCMMCN/NPDATA/ R(200), CODE(200), XR(200), Z(200), XZ(200),
     1NPNUM(10,20),7(200),XT(200)
     1JP(20), IS(20), JS(20), ALPHA(200), IT(200), JT(200), ST(20)
      EQUIVALENCE (R(1), AR), (Z(1), AZ), (IX(1,1), NCODE)
C*
      MESH CONTROL INFORMATION
       * * * * * * * * * * * * * * * * * *
      READ (5,1000) MAXI, MAXJ, NSEG, NBC, NMTL
      WRITE (6,2000) MAXI, MAXJ, NSEG, NBC, NMTL
C*
C*
     ISEG=-1
      PT=3.1415927
      DC 110 J=1,10
      DO 100 I=1.5
      NCODE(I, J)=0
      AR ([, J)=0.
      AZ(1, J)=0.
      JMAX(I)=0
  100 JMIN(I)=MAXI
      LXAM=(L)MIMI
  110 IMAX(J)=0
C* * * * * * *
      LINE SEGMENT CARDS
150 ISEG=ISEG+1
  159 IF(ISEG. EO.NSEG) GO TO 400
      READ(5,1001) I1,J1,P1,Z1,I2,J2,R2,Z2,I3,J3,P3,Z3,IPTICN
      WRITE(6,2001)11,J1,R1,Z1,I2,J2,R2,Z2,I3,J3,R3,Z3,IPTICN
      IPTION=IPTICN+1
      AR([1,J1)=P1
      AZ( 11, J1) = Z1
      NCODE(11,J1)=1
      CALL MNIMX(I1,J1)
      69 TC (150,200,200,300,300,200,200), IPTION
                  * * * * * * * * *
         ERATE STRAIGHT LINES ON BOUNDARY
0.*
      DI= ABS(FLCAT(12-11))
200
      DJ= ABS(FLCAT(J2-J1))
```

```
AR(I2,J2)=P2
     AZ(12.J2)=Z2
     NCODE(12,J2)=1
     CALL MNIMX(12.J2)
     ISTRT=I1
     ISTP=12
     JSTRT=J1
     JSTP=J2
     DIFF=DMAX1(DI,DJ)
     TTER=CIFF-1.
     IINC=0
     JINC=0
     IF(I2.NE.II) JINC=(I2-I1)/IA8S(I2-I1)
     IF(J2.NE.J1) JINC=(J2-J1)/IABS(J2-J1)
     KAPPA=1
     IF(I2.NF.I1.AND.J2.NE.J1.AND.IPTION.NE.3) KAPPA=2
     IF(KAPPA.FO.2) DIFF=2.*DIFF
     FINC=(P2-P1)/DIFF
     ZINC=(Z2-Z1)/DIFF
     WRITE(6,2002) DI, DJ, DIFF, RINC, ZINC, ITER, IINC, JINC, KAPPA
C
C
     CHECK FOR IMPLT FOROR
C
     TF(KARPA.NE.2.OR.DI.EO.DJ) GO TO 210
     WPITE(6, 2003)
     GO TO 150
C
\mathbf{C}
     INTERPOLATE
C
 210 I=11
     1=11
     WRITE (6, 2004)
     00 230 M=1,ITE0
     TE(TTEF. FO. O. AND. IPTION. EQ. 2) GO TO 230
     IF(TTEP.En.O.AND.IPTION.EQ.6) GO TO 230
     'F(ITER.EQ.O.AND.IPTION.EQ.7) GO TO 230
     IF (KAPPA.EC.2) GO TO 220
     I=DJOT
     I=!+I!NC
     ITLD=J
     J=J+JINC
     AP(1,J)=AP(ICLD,JOLD)+RINC
     A7(T,J)=AZ(ICLD,JOLD)+ZINC
     WRITE(6, 2005) I, J, AR(I, J), AZ(I, J)
     CALL MNTMX(T,J)
     NCTDE(I, J)=1
     50 TO 230
  220 CONTINUE
```

```
IF(I1.GT.I2.AND.IPTION.EQ.7) GO TO 221
   IF(II.LT. 12. AND.IPTION.EQ.6) GO TO 221
   I=I+IINC
   AR(I,J)=AR(ICLD,J)+RINC
   AZ(I,J) AZ(IOLD,J)+ZINC
   WRITE(6,2005) I, J, AR(I, J), AZ(I, J)
   NCODE (1.J)=1
   CALL MNIMX(I, J)
   JOLD=J
   J=J+JINC
   AR(I,J)=AR(I,JOLD)+RINC
    AZ(I,J)=AZ(I,JOLD)+ZINC
   NCODE(I,J)=1
   WRITE(6,2005) I,J, AR(I,J), AZ(I,J)
   CALL MNIMX(I,J)
   GO TO 230
221 JOLD=J
    J=J+JINC
    AR(I,J)=AR(I,JOLD)+PINC
    AZ(I, J) =AZ(I, JOLD) +ZINC
   NCODE (I.J)=1
   WRITE(6,2005) I,J,AR(I,J),AZ(I,J)
   CALL MNIMX(I.J)
    ICLD=I
    I=I+!INC
    AR(I,J)=AR(ICLD,J)+RINC
    AZ(T.J)=AZ(TCLD.J)+ZINC
    NCODE(I, J)=1
    WRITE(6,2005) I,J,AR(I,J),AZ(I,J)
   CALL MNIMX(I,J)
230 CONTINUE
    IF(KAPPA.ER.1) GO TO 150
    IF(I1.GT.I2.AND.IPTION.EQ.7) GO TO 231
    TF(II.LT.IZ.AND.IPTION.EQ.6) GO TO 231
    IOLD=I
    I=!+IINC
    AR(I,J:=AR(ICLD,J)+RING
    AZ(I;J)=AZ(IOLD,J)+ZINC
    GO TO 232
231 CONTINUE
    JOLD=J
    J=J+JINC
    AR (I.J) = AP (I.JOLD) +R INC
    AZ(I,J)=AZ(I,JOLD)+ZINC
232 CONTINUE
    NCODE (I.J)=1
    WRITE(6,2005) I, J, AR(I, J), AZ(I, J)
```

330 ISTRT=!1 CT#415 JSTRT=J1 JSTP=J2

C

C

C C

C

```
ZSTP= Z2
  340 CALL ANGLE(RSTRT, ZSTRT, RC: ZC, ANGL)
      CALL ANGLE(RSTP, ZSTP, RC, ZC, ANG2)
      IF(ANG2.LE.ANG1) ANG2=2.0+PI+ANG2
C
      FIND ANGULAR INCREMENT
C
      DI = ABS(FLOAT(ISTP-ISTRT))
      DJ= ABS(FLOAT(JSTP-JSTRT))
      IINC=0
      JINC=0
      IF(ISTRT.NE.ISTP) IINC=(ISTP-ISTRT)/IABS(ISTP-ISTRT)
      IF(JSTPT.NE.JSTP) JINC=(JSTP-JSTRT)/IABS(JSTP-JSTRT)
      LAMDA=1
      IF(IINC.NE.O.AND.JINC.NE.O) LAMDA=2
      DIFF=DMAX1(DI.DJ)
      ITER = DIFF-1.
      IF(LAMDA.EQ.2) DIFF=2.*DIFF
      DELPHI=(ANG2-ANG1)/DIFF
      WRITE(6, 2008) ANGI, ANG2, DIFF, DELPHI
¢
C
      CHECK FOR INPUT ERROR
      IF(LAMDA.NE.2.PR.DI.EQ.DJ) GO TO 350
      WRTTE(6,2003)
      GO TO 150
  350 IC=ISTRT
      JN=JSTRT
      WRITE(6,2004)
C
C
      INTERPOLATE
      NPT=IARS(12-11)+IABS(J2-J1)-1
      DO 380 M=1.ITER
  359 IF(LAMDA.EQ. 2) GO TO 360
      I=10+IINC
      J=J0+J1NC
      CALL MNIMX(I,J)
      NCODE(I.J)=1
      CALL CIRCLE(ANGI, DELPHI, RSTRT, ZSTRT, RC, ZC, I, J)
      WRITE(6,2005) T,J,AR(1,J),AZ(I,J)
      GO TO 370
  360 I=In+IINC
      1=10
      NCODE(I, J)=1
      CALL MNIMX(1,J)
      CALL CIPCLE(APGI, DELPHI, RSTRT, ZSTRT, RC, ZC, I, J)
      WPITE(6,2005) I, J, AR(I, J), AZ(I, J)
```

```
J=JO+JINC
      NCODE(I.J)=1
     CALL MNIMX(I.J)
      CALL CIPCLE(ANGI, DELPHI, RSTRT, ZSTRT, RC, ZC, I, J)
      WRITE(6,2005) I,J,AR(I,J),AZ(I,J)
  370 In=1
  380 JC=J
      IF(LAMDA.NE.2) 50 TO 390
      T=I7+IINC
      MC TDE (T. J)=1
     CALL MNIMX(T.J)
      CALL CIRCLE (ANGI, DELPHI, RSTRT, ZSTRT, RC, ZC, I, J)
      WPITE(6,2005) I,J,AR(I,J),AZ(I,J)
  390 TE(KAPPA.FO.2) GO TO 150
      TSTPT=12
      TSTP=13
      ISTRT= 12
      15TP=13
      RSTRT=R2
      RSTD=R3
      ZSTPT=Z2
      ZSTP=Z3
      KAPPA=2
  399 GC TO 340
      CALCULATE COORDINATES OF INTERIOR POINTS
4CO IF(MAXJ.LE.2) GC TO 430
      12=MAXJ-1
      D7 420 N=1.500
      PESID=0.
      D^ 410 J=2,J2
      11=1M1M(J)+1
      1-(L)XAVI=57
      DO 410 I=I1,12
      IF(NCCDE(I,J).E0.1) GO TO 410
      DP = (AP(I+1,J)+AF(I-1,J)+AR(I,J+1)+AR(I,J-1))/4.-AR(I,J)
      DZ=(AZ(I+1,J)+AZ(I-1,J)+AZ(I,J+1)+AZ(I,J-1))/4-AZ(I,J)
      FFSID=PES!O+DABS(DR)+DABS(DZ)
      AF ( ! ; J ) = AF ( ] , J ) +1 . 8 *DR
      A7(I.J)=A7(I.J)+1.8+DZ
  410 CONTINUE
      IF (N.EO.1) PESI=RESID
      IF (N.EO.1.AND.RESID.EQ.O.)GO TO 430
      IF(PFSID/PES1.LT.1.E-5) GO TO 430
  420 CONTINUE
  430 WRITE(6.2009) N
```

CATION

1DC

```
CALL POINTS
1000 FORMAT (515)
1001 FORMAT (3(213,2F8.3),15)
2000 FORMAT (30H) MESH GENERATION INFORMATION//
    2 41HO MAXIMUM VALUE OF J IN THE MESH------13/
    4 41HO NUMBER OF BOUNDARY CONDITION CARDS----13/
    5 41HO NUMBER OF MATERIAL BLOCK CARDS-----13///)
 2001 FORMAT (//88H INPUT II J1
                                 RI
                                         Z1
                                              12 J2
                                                       22
                                                              Z
                              IPTION/8X,3(214,2F8.4),16)
        13 J3
                  R3
                         23
 2002 FORMAT (5H DI=F4.0,5H DJ=F4.0,7H DIFF=F4.0,7H RINC=F8.3,7H
    INC=F8.3, 7H ITER=13, 7H IINC=13, 7H JINC=13, 8H KAPPA=11)
 2003 FORMAT(1X,38H**BAD INPUT--THIS LINE IS NOT DIAGONAL)
 2004 FORMAT (30H I
                              AR
 2005 FORMAT (215,2F11.6)
 2006 FORMAT (51H ** BAD INPUT - THESE POINTS DO NOT DEFINE A CIRCLE,/,
    13X,6F12.4,10X,2E20.8)
2007 FCRMAT(19H CENTER COORDINATE, (F11.6,1X, F11.6,1X))
2008 FORMAT (7H ANG1=F9.6,7H ANG2=F9.6,7H DIFF=F3.0,9H DELPHI=F9.6)
 2009 FORMAT (//30H COORDINATES CALCULATED AFTER 13,11H ITERATIONS)
     RETURN
     END
```

	CO	MMON BLOCK /T	D / MAP	S1ZE 100		
CATION	SYMBIL	LCCATION	SYMBOL	LOCATION	SYMBOL	LOCA
0	TMAX	50	JMIN	AO	JMAX	
F4	NMTL	F8	NBC	FC		
	_	MMON BLOCK. /N				
CCATION	SYMBOL	LOCATION	SYMBOL	LOCATION	SYMBOL	LOCA
0	AR	0	CODE	640	XR	9
FAO	XZ	15E0	NPNUM	1C20	T	1 F
	co	MMON BLOCK /E	LDATA / MAP	SIZE 28CO		
CCATION	SYMBOL	LOCATION	SYMBOL	LOCATION	SYMBOL	LOCA
0	EPP	640	PR	C80	SH	מ
000	I P	1060	JP	1080	15	16
DUO	iŤ	74E0	JT.	2800	ST	28
LEAO			- 1 1	ZAUU	3.1	/r

LCCATION

1E0

SYMBOL

MNIMX

SYMBOL

ANGLE

LOCATION

1E4

SYMBOL

CIRCLE

LOCA

MNIMX

106

```
SUBROUTINE MNIMX(I,J).
                                           IMPLICIT REAL+8(A-H, 0-Z)
                                         CCMMCN/TD/ IMIN'(20), IMAX(20), JMIN(10), JMAX(10), MAXI, MAXJ,
                           INMTL, NBC
                          IF(J-LT-JMIN(I)) JMIN(I)=J
                                         IF(J.GT.JMAX(I)) JMAX(I)=J
IF(I.LT.IMIN(J)) IMIN(J) I
                                                                                                                                                                                                                                                                                                                                                                                                            The first agree of the region and the first control of the second section of the control of the second section of the 
                                        IF(I.GT.IMAX(J)) TMAX(J)=I
                                      RETURN
                                                                                                                                                                                                                                  The contract of the contract o
                                        END
```

	כחא	MON BLOCK /TD	/ MAP	SIZE	100
LICATION	SYMBCL	LCCATION	SYMBOL	LOCATION	SYMBOL
o	IMAX	50	JMIN	AO	XAML
F4	NMTL	50 F8	NBC	FC	
	• • • • • • • • • • • • • • • • • • • •	i ja saa sa		1	
	SCA	LAR MAP			
LICATION	SYMBOL	LOCATION	SYMBOL	LOCATION	SYMBOL
A4	Ĭ	A8			
	STA	TEMENT NUMBER	MAP		
ENT LOCATION	STATEMENT	LOCATION	STATEMENT	LOCATION	STATEMENT
13A	4	13A	5	15C	6

TICHS IN EFFECT* NOID, BCD, STURCE, NOLIST, NODECK, LOAD, MAP TICAS IN FFFFCT+ NAME = MNIMX . LINECHT = 50 ATTSTTCS# SOURCE STATEMENTS = 9, PROGRAM SIZE = ATISTICS* NO DIAGNOSTICS GENERATED

END

	SUBROUTINE MODIFY(NEQ, N, U)
	IMPLICIT REAL+8 (A-H, O-Z)
	COMMON/SOLVE/8(72),A(72,36),NUNTC,MBAND
	DO 10 M=2, MBAND
	K=N-M+1
-	IF(K.LE.O) GO TO 5
	B(K)=B(K)-A(K,M)+U
	A(K,M)=0.0
5	K=N+M-1
	IF (NEQ.LT.K) GO TO 10
	B(K)=B(K)-A(N,M)+U
	A(N.M)=0.0
10	CONTINUE
••	4(N, 1)=1.0
	B(N)=U
	A COLLAND

	CO	MMON BLOCK /S	OLVE / MAP	SIZE 5346	1 -	
PCATION	SYMBOL	LOCATION	SYMBOL	LOCATION	SYMBOL	LOCA
0	A	240	NUMTC	5340	MBAND	53
	SC	ALAR MAP				
CATTON	SYMBOL	LCCATION	SYMBOL	LOCATION	SYMBOL	LOCA
88	M .	CO	K	C4	N	
	ST	ATEMENT NUMBE	R MAP			
TCATION	STATEMEN		STATEMENT	LOCATION	STATEMENT	LOCA
180	4	18C	5	198	6	1
1E0	9	1F0	10	200	11	2
248	14	264	15	278	16	2

IN EFFECT* NOID, BCD, SOURCE, NOLIST, NODECK, LOAD, MAP IN EFFECT* NAME = MODIFY , LINECHT = 50 SOURCE STATEMENTS = 17, PROGRAM STZE = ICS* NO DIAGNOSTICS GENERATED

```
SUBROUTINE MPLOT
        IMPLICIT REAL+8(A-H, 0-Z)
        INTEGER CODE
       CCMMON/TD/ IMIN(20).IMAX(20).JMIN(10).JMAX(10).MAXI.MAXJ.
       INMTL . NBC
       CCMMON/NPCATA/ R(200), CODE(200), XR(200), Z(200), XZ(200),
       1NPNUM (10,20),T(200),XT(200)
       PFAL *4 X(100), Y(100), TX(2), TY(2), TITLE(20), ZMAX
       READ (5,1000) TITLE, RMAX, ZMAX
       CALL CCP2SY (0.7,0.2,0.2,TITLE,0.0,80)
       CALL CCP1PL (0.7,0.7,-3)
       TX(1)=0.0
       TY(1)=0.0
       TX(2)=RMAX/9.0
        TY(2)=QWAX/9.0
        ZMAX=ZMAX**Y(2)+2.0
        TF (ZMAX.LT.17.0) ZMAX=17.0
       07 10C J=1.MAXJ
       NSTART=IMIN(J)
       MISTOP=IMAX(1)
       D7 101 IMMSTART, NSTOP
       M=M+1
       NF=NPNIM(I.J)
       Y(N)=R(NP)
    101 X(N)=Z(NP)
       CALL CCP6LN (X,Y,N,1,TX,TY)
    100 CENTINUE
       D? 102 I=1.MAX!
        (I) NIML=TGATZV
       (I)XAML=QOTSN
        N=O
        D7 103 J=MSTART NSTOP
       N=N+1
       MP=MPNIM(I,J)
        A(A)=0(VID)
    103 X(N) = Z(NP)
        CALL CCPGLN (X,Y,N,1,TX,TY)
    102 CONTINUE
        CALL CCPIPL (ZMAX.-0.7.-3)
   1000 FORMAT (2044/2F10.0)
        PETURN
        FND
                                  / MAP SIZE
                 COMMEN BLOCK /TO
                                                    100
                                            LOCATION
TCATICN
            SYMBOL
                     LCCATION SYMBOL
                                                         SYMBOL
                                                                   LOCA
           IMAX
   0
                                  JMIN
                                                AO
                                                          JMAX
```

```
FUNCTION NODE(1,J)
    IMPLICIT REAL+8(A-H, 0-Z)
   CCMMCN/TD/ IMIN(20), IMAX(20), JMIN(10), JMAX(10), MAXI, MAXJ,
  INMTL, NBC
   NODE=0
   00 100 JJ=1.J
   NSTART=IMIN(JJ)
   NSTOP=[MAX(JJ)
    DO 100 II=NSTART, NSTOP
    NODE=NODE+1
    IF(JJ.EO.J.AND.II.EQ.I) PETURN
100 CONTINUE
    RETURN
    END
```

•	co	MMON BLOCK /TD	/ MAP	SIZE 1	00	
CATION	SYMBOL	LOCATION	SYMBOL	LOCATION	SYMBOL	TUCY.
0	IMAX	50	JMIN	AO	XAML	1
F4	NAL	F8	NBC	FC		
	EC	UIVALENCE DATA	MAP			
DEATION	SYMBOL	LOCATION	SYMBOL	LOCATION	SYMBOL	LOCA"
ΛΟ						
	SC	ALAR MAP				
PCATION	SYMBOL	LCCATION	SYMBOL	LOCATION	SYMBOL	LOCA.
14	J	AB	NSTART	AC	NSTOP	1
BA	-					
	57	ATEMENT NUMBER	MAP			
CATION	STATEMEN	T LOCATION	STATEMENT	LCCATION	STATEMENT	LOCA
156	4	156	5	158	6	10
17A	9	182	1.0	18E	11	11

IN EFFECT * NOID, BCD, STURCE, NOLIST, NODECK, LOAD, MAP 50 , LINECHT = IN EFFECT* NAME = NCDE · 105* STURCE STATEMENTS = 13, PROGRAM SIZE = 508 ICS* NO DIAGNOSTICS GENERATED

```
SUBROUTINE POINTS
      IMPLICIT REAL+8(A-H. 0-Z)
      INTEGER CODE
      CCMMCN/BASIC/ACELZ, ANGVEL, ANGACC, TREF, VOL, NUMNP, NUMEL, NUMPC, NUMSC,
     INUMST
     CCMMCN/MATP/RO(6),E(12,16,6),EE(16),AOFTS(6)
     COMMON/NPDATA/ R(200), CODE(200), XR(200), Z(200), XZ(200),
     INPNUM (10, 20), T(200), XT(200)
     CCMMUN/ELUATA/ BETA(200), EPR(2001, PR(20), SH(20), IX(200,5), IP(20),
     1JP(20), IS(20), IS(20), ALPHA(200), IT(200), JT(200), ST(20)
      CCMMCN/SGLVE/ X(888), Y(888), TEM(888), NUMTC, MBAND
      CCMMON/TD/ IMIN(20).IMAX(20).JMIN(10).JMAX(10).MAXI.MAXJ.
      CCHMCN/PLANE/NPP
      DIMENSIONAR(10,20),AZ(10,20),MATRIL(200,5),BLKANG(200),
     1BLKALF(200)
      DIMENSION IBNG(130), NBNG(130)
      EQUIVALENCE (R(1), AR), (Z(1), AZ)
FSTABLISH NODAL POINT INFORMATION
      NEL=0
      MOD STIM= Q
      DO 100 J=1, MAXJ
      NSTAFT=IMIN(J)
      NSTOP=TMAX(J)
      DO 100 I=NSTART, NSTOP
  100 NUDSUM=NCDSUM+1
      NEL SUM=0
      I-LXAP=XAVLI.
      DO 1.0 JJ=1,JJMAX
      N'STOP=MINO(IMAX(JJ), IMAX(JJ+1))-1
      ((I+LL)NIMI,(LL)NIMI)OXAM=TRATZN
      DO 110 II=NSTART, NSTOP
  110 MELSUM=NELSUM+1
      NUMNP=NCDSUM
      NUMEL *NELSUM
      D" 120 J=1,MAXJ
      . (L)MIMI STARTSIA
      HSTOP=[MAX(J]
      DO 120 I=NSTAPT NSTOP
      NPNUM(I.J)=NCDE(I.J)
      NP=NPNU4(I,J)
      (L.I) PA=(PA)
      READ AND ASSIGN BOUNDARY CONDITIONS
```

KTL=1

```
TNITIALIZE
DO 130 I=1.NUMNP
      CODE(I)=0
      IF(R(I).EO.O..AND.NPP.EQ.O) CODE(I)=1.
      XZ1.)=0.
      XT(I)=0.0
  130 T(1)=0.
      IF(NBC.EQ.0) GO TO 210
      DO 200 IBCON=1.NBC
      READ(5,1002) 11,12,J1,J2,ICN,PCON,ZCON,TCON
      DO 200 I=I1.12
      DA 200 J=J1,J?
      (L.J) MUNGN=9M
      CODE (MP) = ICN
      XP(NP)=RCON
      XT(NP)=TCON
  200 XZ(NP)=ZCON
  210 MPRINT=0
      DO 230 J=1, MAXJ
      NSTART=IMIN(J)
      (L)XAMI=PORTSM
      DO 236 I=MSTART, NSTOP
      (L.I)MINGN=QN
      IF(MPPINT.NE.O) GO TO 220
      WRITE(6,2000)
      MPRINT=59
  220 MPRINT=MPRINT-1
  230 WRITE(6,2001) I, J, NP, CODE(NP), R(NP), Z(NP), XP(NP), XZ(NP), XT(NP)
ASSIGN MATERIALS IN BLOCKS
  . . . . . . . . . . . . . . .
      DO 300 41=1, NUMEL
  300 IX(M1,5)=0
      DO 310 IMTL=1,NMTL
      PEAD (5,1000) MTL, (MATRIL(IMTL, IM), IM=2,5), BLKANG(IMTL),
     18LKALF(IMTL). IBNG(IMTL). NBNG(IMTL)
  310 MATRIL(INTL, 1)=PTL
      ICNG=0
      NCNG=0
      ESTABLISH ELEMENT INFORMATION
     . . . . . . . . . . . . . .
      JJWAX=MAXJ-1
      N=O
      MTL=1
```

```
07 440 JUST JUNAY
     NSTOP-HINO(IMAX(JJ), TMAX(JJ+IT)-1
      MSTART=MAXO(IMIN(JJ), IMIN(JJ+1))
      DO 440 II=NSTART-NSTOP
      NEL=NEL+1
      DO 400 IMTL=1.NMTL
      IF(II.LT.MATRIL(IMTL, 21) GO TO 400
      IF(II.GE. MATRIL(IMTL, 3)) GO TO 400
      IF(JJ.LT.MATRIL(IMTL.4)) GO TO 400
      IF(JJ.GE.MATRIL(INTL.5)) GO TO 400
      KAT=IMTL
      MAT=MATRIL(IMTL.1)
 400 CONTINUE
      TELKAT EC KTLL GO TO 410
      KTL =KAT
      TAME JTW
      57 TC 420
  410 TELTI-FO-NSTARTI GO TO 420
      IF(II.NE.JUMAX.OP.II.NE.NSTOP) GO TO 440
      4=MF1+1
      IANG=ICNG
      NANG=NCNG
      GO TO 421
  420 I=NPAUM(II.IJ)
      1= [+]
      K=NPNUM(II+1.3J+1)
      LzK-1
      MENIFI
      T = ( I . M ) X T
      IX(14.2)=J
      1X(", 3) = F
      1X(M.4)=L
      1X(4.5)=MTL
      B-TA(M)=BLKANG(KTL)
      ALPHA (M) = BLKALF (KTL)
      TANG= ICHG
      NAMG=NCNC
      ICMG=IBNG(KTL)
      NCNG=NBNG(KTL)
471
      MC=2
  1+N=M 054
      IF (M.LE.N) GO TO 440
      IX(N \cdot 1) = IX(N-1 \cdot 1) + 1
      1X(11.2)=1X(N-1.2)+1
      1 \times (N - 3) = 1 \times (N - 1 - 3) + 1
      !X(N.4)=1X(N-1.4)+1
      !X(N,5)=!X(N-1,5)
      BETAIN)=BETAIN-1)
```

```
- LEVEL 21
                            POINTS
                                               DATE = 75066
                                                                     14/36/25
       IF! IANG. EQ. 1) GO TO 442
       ALPHA(N)=ALPHA(N-1)
       GN TN 443
   442 CINTINUE
       IF(NC.GT.NANG) GO TO 444
        ALPHA(N) = ALPHA(N-1)
       GC TC 443
   444 NC=1
       ALPHA(N) = -ALPHA(N-1)
   443 CONTINUE
       NC=NC+1
       IF(M.GT.N) SE TE 430
   440 CONTINUE
        TF(NUMNP.GT. 2000) WRITE(6. 2002)
      * * * * * * * * * * * * * * * * *
        SET NODAL POINT TEMPERATURE TO REFERENCE TEMPERATURE
 IF(MUMTC.NE.G) RETURN
        DO 500 N=1.NUMMP
   5CO T(N)=TPEF
  1000 FORMAT (515,2F10.0,215)
  1002 FORMAT(415,110,3F10.0)
                                                                    Z-ORDINA
                                  NP
                                             TYPE
                                                     R-ORDINATE
  2000 FTPMAT (128H1 I J
      ITE P LOAD OF DISPLACEMENT IZ LOAD OR DISPLACEMENT IT LOAD OR DISP
       2LACEMENT )
  2001 FORMAT (215,16,112,F13.6,F14.6,E26.7,E24.7,E24.7)
2002 FORMAT (35H LAD INPUT - FOO MANY NODAL POINTS)
        RETURN
        END
```

	COMMON BLOCK	/BASIC / MAP	SIZE 3C		
CATION SYMBOL	L LOCATION	SYMBOL	LOCATION	SYMBAL	LOCATI
O ANGVE	L 8	ANGACC	10	TPEF	18
28 NUMEL	5C	NUMPC	30	NUMSC	31
	COMMON BLOCK	/MATP / MAP	SIZE 24E0		
CATION SYMBOL	LOCATION	SYMBOL	LOCATION	SYMBOL	LOCATI
0 €	30	EE	2430	APFTS	248(
	CUMMUN BLOCK	/NPDATA / MAP	SIZE 2BCO		
TATICH SYMBOL	LOCATION	SYMBOL	LCCATION	SYMBOL	LOCATI
U AP	0	CODE	640	ΧÞ	960
FAO XZ	15E0	NPNII -	1020	T	154(

```
SUBROUTINE QUAD
     IMPLICIT REAL +8(A-H, 0-Z)
     INTEGER CODE
     REAL *8 NUSH, NUTH, NUTS, NUNS, NUNT, NUST
     DIMENSION DUMMY(6,6), DUMMY16,6)
     COMMON/BASIC/ACELZ, ANGVEL, ANGACC, TREF, VOL, NUMNP, NUMEL, NUMPC, NUMSC,
    INUMST
     CCMMCN/MATP/RO(6), E(12,16,6), EE(16), ADFTS(6)
     COMMON/NPDATA/ R(200), CODE(200), XR(200), Z(200), XZ(200),
    1NPNUM(10,20), T(200), XT(200)
     CCMM3N/ELDATA/ BETA(200), EPR(200), PR(20), SH(20), IX(200,5), IP(20),
    1JP(20).1S(20).JS(20).ALPHA(200).1T(200).JT(200).ST(20)
     CGMMCN/ARG/PRE(5),ZZZ(5),RR(4),ZZ(4),S(15,15),P(15).TT(6),
    14(6,15), CPZ(6,6), XY(10), ANGLE(4), SIG(18), EPS(18), N
     CCMMCN/RESULT/85(6,15),D(6,6),C(6,6),AR,BB(6,9),CNS(6,6)
     CCMMGN/PLANE/NPP
     I1=IX(N. 1)
     J1=[X(N.2)
     K1=[X(N,3)
     L1=!X(N,4)
     MTYPE=IABS(IX(N,5))
     IX(N,5)=-IX(N,5)
INTERPOLATE MATERIAL PROPERTIES
DO 100 I=1,12
  100 EE(I)=E(1,I+1,MTYPE)
     D7 110 !=1.6
     D7 110 J=1,6
     CNS(1,J)=0.0
     C(1,J)=0.0
 110 D([.J]=0.0
FORM STRESS-STRAIN RELATIONSHIP IN N-S-T SYSTEM
    NUNS=EE(4)
     NUNT=EE(5)
     NUST=EE(6)
     MUSN# (EE(2)*NUNS)/EE(1)
     NUTN={EE (3) + NUNT}/EE (1)
     NUTS={EE(3)+NUST)/EE(2)
     DIV=1.0-NUNS+NUSN-NUST+NUTS-NUNT+NUTN-NUSN+NUNT+NUTS
    1-NUNS*NUTN*NUST
     CNS(1,1), EE(1)+(1.0-AUST+NUTS)/DIV
     CNS(1,2)=EE(2)*(NUNS+NUNT*NUTS)/DIV
     CNS(1,3)=EF(3)+(NUNT+NUNS+NUST)/DIV
     CNS(2,1)=CNS(1,2)
     CNS(2,2)=FE(2)+(1.0-NUNT+NUTN)/DIV
```

C

```
CNS(2,3)=EE(3)*(NUST+NUSN*NUNT)/DIV
      CNS(3,1)=CNS(1,3)
      CNS(3,2) = CNS(2,3)
      CNS(3,3) = EE(3) + (1.0-NUNS + NUSN)/DIV
      CNS (4,4) =EE(7)
      CNS(5,5) = EE(8)
      CNS(6,6)=EE(9)
C
      SET UP STRAIN TRANSFORM TO N-S-T SYSTEM
      SINA=DSIN(ALPHA(N))
      COSA=DCOS (AL PHA (N))
      S2=SINA**2
      C2=COSA+*2
      SC=SINA*CCSA
      D(1,1)=C?
      D(1,3)=52
      D(1,6)=-SC
      D(2,1)=52
      D(2,3)=C2
      D(2,6)=5C
      D(3,2)=1.0
      D(4,1)=2.0*SC
      D(4,3) = -2.0 * SC
      D(4,6)=C2-S2
      D(5.4)=SINA
      D(5,5)=COSA
      D(6,4)=COSA
      D(6,5) =- SINA
C
      SET UP STRAIN TRANSFORMATION TO R-Z-T SYSTEM
      SINB=DSIN(BETA(N))
      COSB=DCOS(BETA(N))
      S2=SINB**Z ...
      C2=CCSB++2
      SC=SINB+C7SB
      C(1,1)=52
      C(1,2) *C2
      C(1,4)=SC
      C(2,1)=C2
      C(2.2)=52
      C(2,4)=-SC
      C(3,3)=1.0
      C(4,1) = -2.0 * SC
      C(4,2)=2.0+5C
      C(4,41=S2-C2
      C(5,5)="INB
      C(5,6)=-1.C$B
      C(6,5)=COSB
      C(6.6)=SINB
      CALCULATE CRZ MATRIX
```

```
DO 120 I=1,6
      DO 120 J=1.6
     DUMMY(I,J)=0.0
      DO 120 K=1.6
  120 DUMMY(1, J)=DUMMY(1, J)+D(1,K)+C(K, J)
      00 130 1=1.6
      00 130 J=1.6
      DUMMY1(1.J)=0.0
      DO 130 K=1.6
  130 DUMMY1(I,J)=DUMMY1(I,J)+CNS(I,K)+DUMMY(K,J)
      DO 140 I=1.6
      DO 140 J=1.6
      DUMMY(1, J)=0.0
      Dr 140 K=1.6
  140 DIMMY(I, J)=DIMMY(I, J)+D(K, I) *DUMMY1(K, J)
      DO 160 I=1.6
      D7 150 J=1.6
      CRZ(1,J)=0.0
      DO 150 K=1.6
  150 GRZ(I, J) = CFZ(I, J) + C(K, I) * DUMMY(K, J)
      TT(1)=0.0
      DO 160 M=1,6
      P(M)=0.0
      D7 161 II=1,3
      IF(A7FTS(MTYPE).E0.1.) P(M)=CNS(M,II)*EE(II+9)
  161 P(M)=P(M)+(T(N)-TREF)+CNS(M, II)+EE(II+9)
      DO 160 K=1.6
  160 TT(1)=TT(1)+C(K,1)+D(M,K)+P(M)
C
C
      FORM QUADRILATERAL STIFFNESS MATRIX
      PPR(5)=(P([])+P(J])+R(K])+R(L]))/4.
      222(5)=(2(11)+2(J1)+2(K1)+2(L1))/4.
      DC 200 M=1.4
      MU=[X(N,M)
      JE(NPP.NE.O) GC TO 190
      IF(P(MM).EQ.O..AND.CTDE(MM).EQ.O.)CODE(MM)=1.
  190 PRP (M) = R (MM)
  200 ZZZ(M)=Z(MM)
      DO 220 II=1.15
      P(II)=0.0
      DO 220 JJ=1,15
  220 S(TT,JJ)=0.0
      DO 90 1=1.6
      VOL=0.
      07 90 J=1.15
   90 BS(1,J)=0.C
      AR=0.0
  240 CALL TRISTF(4,1,5)
```

G LEVEL	21	· QUA	10	DATE = 75066		14/36/25
	CALL TRISTF	(1,2,5)				
	CALL TRISTF	(2.3.5)		1.000°0 m.	•	
	CALL TRISTE	(3.4.5)				
	111 41 121 40					•
	DO 91 J=1.15	5				
91	85(T.J)=85(Tail) /AR		•		
•	PETURN	. 10116				
	END			•		
		,				
		. =				
			/BASIC / MAP			
CATION	SYMBOL		SYMBOL			LOCA"
0	ANGVEL	8	ANGACC	10	TREF	
28	NUMEL	20	ANGACC	30	NUMSC	
	C	OMMON BLOCK	/MATP / MAP	SIZE 24E0		
CATION			SYMBOL		SYMBOL	LOCA
0	E		EE	2430	ADFTS	
) (1 5.			_
	C	OPMON BLOCK	/NPDATA / MAP	SIZE 28CO		
CATION	SYMBOL	LOCATION	SYMBOL	LOCATION	SYMBOL	LOCA
0	CODE	640	XR		Z	F
1020	T	1F40	XT	2580		
	_					
			/ELDATA / MAP			
	SYMBOL					_
0	EPR	640		C80	SH	O:
1060	JP	1080	15	1E00	JS	18
24E0	JT .	2800	ST	2820		
	C	NAMON BIOCK	/ARG / MAP	SIZE DC4		
CATION	SYMBOL		SYMBOL			LOCA
	-		S THOUL RP		22	LUCA
0 798	7.7.7 TT	79 810	H	50 840	CPZ	8
C80	SIG	CAO	EPS	D30	N	D ₁
COU	210	CAV	EFS	030	14	U.
	C	OPMON BLOCK	/RESULT / MAP	SIZE 7EA		
CATION	SYMBOL		SYMBOL	LOCATION	SYMBOL	LOCA
ō	D	200	C	3F0	AR	5
608	-		-		·	

COMMON BLOCK /F ANE / MAP SIZE

```
SUBROUTINE SET
                IMPLICIT REAL =8 (A-H.O-Z)
                INTEGER CODE
               COMMON/BASIC/ACELZ, ANGVEL, ANGACC, TREF, VOL, NUMPP, NUMEL, NUMPC, NUMSC,
             INUMST
               CCMMCN/NPDATA/ R(200).CODE(200).XR(200).Z(200).XZ(200).
             INPNUM(10,20),T(200),XT(200)
               COMMON/ELDATA/ BETA(200), EPR(200), PR(20), SH(20), TX(200,5), IP(20).
             1JP(20), IS(20), J$(20), ALPHA(200), IT(200), JT(200), ST(20)
               COMMON/CIT/NEQL .NSLIP. ICRACK, ISLIP, INP. NSKIP
               CCMMON/DATA1/RTN(200),RST(200),RNN(200)
               C7MM3N/DATAZ/IFAIL (200). T8(200.12). 1CR (200). IAD(200.4)
               COMMON/DATAB/TEATL + CF
C
               PEAD NUMBER OF ITERATIONS FOR SLIP-FOR EQUILIBRIUM-COEFFICIENT
C
C
               OF FRICTION AND MAXIMUM ALLOWED INTERLAMINAR SMEAR STRESS
C
                READ(5.1001) ASLIP. NEOL. TFAIL
               DO 10 I=1, NUMNP
                IFAIL(I)=0
   10
                ICR(I)=0
C
C
                READ PARAMETERS OFFINING DIRECTION OF SLIP
C
                READ(5,1001) NCBI,NCBJ
                IF (NCBI. EQ.O) GO TO 13
                DO 11 N=1.NCBT
                READ(5,1000) NIMIN, NIMAX, NJMIN, NJMAX
                DO 11 I=PITMIN,NIMAX
                XAME A. AIMERTEL II OU
                MINISHER I I ON
                ICP ( P P ! . 1 ) = 1
   11
   13
                CONTINUE
                TELLOSS. EC. O) GO TO 14
                no 12 N =1.MCAJ
                PEAD(5.1000) NIMIN.NIMAX.NIMIN.NIMAX
                NT 12 JENTMIN-NIMAX
                XAMEA. ATMLITEL ST CO
                NOIJ=NUNUM(I. 1)
   12
                 ICR(NPIJ)=2
   14
                CONTINUE
C
C
                IDENTIFY FOUR ACJACENT ELEMENTS FOR EACH NODE
C
                DO 21 N=1.NUMMP
                DO 21 I=1.4
   21
                IAD(N, I)=0
                DO 22 N=1, NUMEL
                                                  and the same transfer with the first of the same of th
```

		Maria Service Co.	,
G LEVEL 21	SET	DATE = 75066	14/36/21
DO 22 I= IXX=IX(N	,1)		

CF

	CC	MMCN BLOCK	/BASIC / MAP	SIZE 3C		
CATION	SYMBOL	LOCATION	SYMBOL	LOCATION	SYMBOL	FOCV.
0	ANGVEL	8	ANGACC	10	TPEF	•
28	NUMEL		NUMPC	30	NUMSC	
•						
	C	MMCN BLOCK	/NPDATA / MAP	SIZE 28CO		
ICATION	SYMBITL				SYMBOL	LOCA"
0	CODE			960	Z	F
1020	T	1F40		2580	•	•
1020	,	11-40	^'	2360		
	cc	MMCN BIOCK	/ELDATA / MAP	S1ZE 28C0		
PEATTEN	SYMBOL		SYMBOL		SYMBOL	LOCA
	EDB			C80	SH	D
0						18
1060	JP	1080		1E00	JS	15
24E0	74	2800	ST	2820		
		MMCS DIGCH	/CIT / MAP	e175 10		
3C 471 CM			SYMBOL		SYMBOL	LOCA
						LUCA
0 14	NSLIP	•	ICRACK	7	ISLIP	
• *						
	co	PMON BLOCK	/DATA1 / MAP	SIZE 12CO		
PCATION			SYMBOL			LOCA
0			RNN			
-	. •			• • • • • • • • • • • • • • • • • • • •		
	cr	MMCN BLICK	/DATA2 / MAP	SIZE 50CO		
CATION			SYMBOL		SYMBOL	LOCA
0			ICP		TAD	51
	_		• •		- 17	
•	co	PHEN BLOCK	/DATA3 / MAP	SIZE 10		
OCATION	SYMBOL				SYMBOL	LOCA

```
SUBPOUTINE SOLV
      TMPLICIT REAL+8(A-H, 0-Z)
      COMMON/BASIC/ACELZ,ANGVEL,ANGACC,TREF,VOL,NUMNP,NUMEL,NUMPC,NUMSC,
     1 NUMST
      CCMMON/SQLVE/B(72),A(72,36),NUMTC,HBAND
      MM=MB AND
      NN=36
      ML =NN+1
      MH=NN+NN
      REWIND 1
      PEWIND 2
      MB=0
      G7 TC 150
      PEDUCE EQUATIONS BY BLOCKS
0.*
C
5
      1. SHIFT BLOCK OF EQUATIONS
C
  100 NB=NB+1
      DO 125 N=1.NN
      MM=NN+N
      3(N)=8(MM)
      B(NM)=0.0
      DO 125 M=1,4M
      A(N,P)=A(N,M)
  125 A(NM.M)=0.0
C
C
      2. PEAD NEXT BLOCK OF EQUATIONS INTO CORE
۲,
      IF (NUMBLE .. EO.NB) GO TO ZOO
  150 READ(2) (8(N), (A(N,M), M=1, MM), N=NL, NH)
      TF(NB.E0.0) GT TO 100
C
C
      3. PEDUCE BLCCK OF EQUATIONS
  200 DO 300 N=1.NA
      IF(A(N,1).EQ.0.0) GO TO 300
      B(N) = P(N)/A(N,1)
      D7 275 L=2.4M
      TF(A(N,L).E0.0.0) GO TO 275
      C=A(N,L)/A(N,1)
      1=N+L-1
      J=0
      D7 250 K=L, NH
      J=J+1
  250 A(I,J)=A(I,J)-C+A(N,K)
      B(T)=B(I)-A(N2L)+B(N)
      A(N.L)=C
```

```
275 CONTINUE
  300 CONTINUE
C
      4. WRITE BLOCK OF REDUCED EQUATIONS ON FORTRAN UNIT 1
C
      IF (NUMBLK.EQ.NB) GO TO 400
      WRITE (1) (B(N), (A(N, M), M=2, MM), N=1, NN)
      60 TO 100
     . . . . . . . . . . . . . .
      BACK-SUBSTITUTION
  400 DO 450 M=1,PN
      N=NN+1-M
      D7 425 K=2.MM
      L=N+K-1
  425 B(N)=B(N)-A(N,K)+B(L)
      NM=N+NN
      B(NM)=B(N)
  450 A(NM.NB)=B(N)
      NB=NB-1
      IF(NB.E0.0) 60 TO 500
      BACK SPACE 1
      READ (1) (8(A), (A(N, M), M=2, MM), N=1, NN)
      BACKSPACE 1
      60 TO 400
      ORDER FORMER UNKNOWNS IN B ARRAY
  500 K=0
      DO 600 48=1.NUMBLK
      DO 600 N=1.NA
      NN=N+NN
      K=K+1
  600 B(K) =A(NM.NB)
       * * * * * *
      WRITE SOLUTION
      MPRINT=0
      DO 710 N=1.NUMNP
      IF(MPRIMT.NE.O) GO TO 700
      WRITE (6,2000)
      MPRINTES9
  700 MPRINT=MPPINT-1
  710 WRITE (6.2001) N.B(3+N-2).B(3+N-1).B(3+N)
 2000 FORMAT (13H1 NCCAL POINT, 18X, 2HUR, 18X, 2HUZ, 18X, 2HUT)
 2001 FORMAT (113.3E2C.7)
      RETURN
      END
```

```
SUBROUTINE STIFF
      IMPLICIT REAL+RIA-H. 0-Z)
      INTEGER CODE
      COMMON/BASIC/ACELZ, ANGVEL, ANGACC, TREF, VOL, NUMNP, NUMEL, NUMPC, NUMSC,
     1 NUMST
      CCMMCN/NPDATA/ R(200), CODE(200), XR(200), Z(200), XZ(200),
     INPNUM (10,20), T(200), XT(200)
      COMMON/ELDATA/ BETA(200), EPR(200), PR(20), SH(20), IX(200,5), IP(20),
     1JP(20), IS(20), JS(20), ALPHA(200), IT(200), JT(200), ST(20)
      COMMCN/ARG/FPR(5),ZZZ(5),RR(4),ZZ(4),S(15,15),P(15),TT(6),
     1H(6,15),CFZ(6,6),XI(10),ANGLE(4),SIG(18),EPS(18),N
      CCMMCN/SCLVE/B(72),A(72,36),NUMTC,MBAND
      COMMON/PLANE/NPP
      CCMMCN/DATA2/IFATL(200), TB(200,12), ICR(200), IAD(200,4)
      DIMENSION LM(4), $2(12,3), $3(3,12), $4(3,3), $5(12,3), $6(12,12)
     THITTIALIZATION
C
C* * * * * * * * * *
      PEWIND 2
      MD=36
      ND2=2*ND
      STOP = 0.
      NUMBLK=0
      DO 100 N=1,ND2
      B(N)=0.0
      D7 100 M=1.ND
  100 A(N.M)=0.0
C* *
  200 NUMBLK=NUMBLK+I
      NH=NB*(NUMBLK+1)
      MM=NH-MB
      ML=NM-NB+1
      KSHIFT=3*1L-3
      DO 340 N=1.NLMEL
      IF(IX(N,5).LE.O) GO TO 340
      D? 210 T=1,4
      TE(IX(6.1).LT.NL) GO TO 210
      IF(IX(N, I).LE.MM) GO TO 220
  210 CONTINUE
      67 TO 340
  220 CALL CUAD
      IF(VOL.GT.O.) GO TO 230
      WOITE(6.2000) N
      STOP=1.
  230 IF(IX(M,3).EQ.IX(N,4)) GO TO 300
      DO 231 !I=1.3
```

DATE # 75066

320 A. 11

```
DO 231 JJ=1,3
  231 S4(11,JJ)=S(11+12,JJ+12)
     CALL SYMINV(S4,3)
     DO 232 II=1:12
     DO 232 JJ=1,3
  232 S2(II,JJ)=S(II,JJ+12)
     DO 233 II=1.3
     DO 233 JJ=1.12
  233 S3([T,JJ)=S(II+12,JJ)
     D? 240 I=1,12
      DO 240 J=1.3
      S5(I,J)=0.0
      D7 240 Y=1.3
  240 \ S5(I,J) = S5(I,J) + S2(I,K) + S4(K,J)
      00 241 1=1.12
      D7 241 J=1,12
      S6(1,J)=0.0
      D7 241 Y=1,3
  241 \text{ } 56(1,J) = 56(1,J) + 55(1,K) * 53(K,J)
      DO 234 II=1,12
      D7 234 JJ=1,3
  234 P(II)=P(II)-55(II,JJ)*P(JJ+12)
      nn 235 IT=1.12
      D7 235 IJ=1,12
  235 S(11,JJ)=S(11,JJ)-56(11,JJ)
      DO 93 I=1,12
      D7 93 J=1.12
      P(I) = P(I) - S(I,J) * TB(N,J)
ALD ELEMENT STIFFNESS MATRIX TO BODY STIFFNESS MATRIX
  300 DO 310 I=1,4
310
      LM(!)=3*[X(N,I)-3
      n? 330 I=1,4
      DO 330 *=1.3
      II=L4(I)+K-KSHTFT
      KK=3+1-3+K
      8(11)=B(11)+b(kk)
      D7 330 J=1,4
      Dn 330 L=1,3
      JJ=L+(J)+L-!!+!-KSH[FT
      11=3+J-3+L
      IF(JJ.LE.0) 67 TO 330
      IF(ND.GE.JJ) GC TO 320
      WP: TE(6, 2001) N
      STOPEI.
      60 TO 340
              =A(TI,JJ)+S(KK,LL)
```

```
DATE = 75066
G LEVEL 21 STIFF
                                                                  14/36/2
   330 CONTINUE
    340 CONTINUE
       ADD CONCENTRATED FORCES
      * * * * * * * * * * * * *
       DO 400 N=NL.AM
       IF(N.GT.NUMNP) GC TO 500
       K=3*N-KSHIFT
       B(K)=B(K)+X^{T}(N)
       B(K-1)=B(K-1)+XZ(N)
    400 P(K-2)=B(K-2)+XP(N)
        ADD PRESSURE BOUNDARY CONDITIONS
 500 IF(NUMPC.ED.O) GO TO 600
        D7 540 L=1.NLMPC
        I=IP(Li
       J=JP(L)
       PP=PP(L)/6.
        0 = (0(1) - r(1)) + p
       DZ=(Z(I)-Z(J))*PP
       = X = 2 . 4P (1) + R (J)
        7X=P(1)+2. += (J)
        II=3*I-KSHIFT-1
        JJ=3*J-K SHIFT-1
        IF(II.LE.O.DR.II.GT.ND) GO TO 520
        STNA=O.
        CTSA=1.
    510 B(!!-1)=8(II-1)+PX*(COSA+DZ+SINA+DR)
        B(II)=B(II)-RX+(SINA+DZ-COSA+DR)
    520 TELIJ.LE.O.OF.JJ.GT.NO) GO TO 540
        STNA=0.
        COSA=1.
    530 B(J.H-1)=H(JJ-1)+ZX#(CDSA+DZ+SINA+DR)
        B(JJ)=B(JJ)-ZX+(SINA+DZ-CGSA+DR)
    540 CONTINUE
 £. *
        ADD SHEAP BOUNDARY CONDITIONS
    600 IF(NUMSC.EC.O) GC TO 701
        D7 640 L=1, NI.MSC
        I=IS(L)
        J=J5(L)
        S=SHIL1/6.
        DZ=(7(1)-Z(J))*SS
        UP=(F(J)-F(T))+SS
        FX=2.*P(])+P(J)
        ZX=9(1)+2. +P(J)
```

```
II=3*I-KSHIFT-1
      JJ=3+J-KSHIFY-1
      IF(II.LE.O.DR.II.GT.ND) GO TO 620
      SINA=0.
      COSA=1.
  610 B(II-1)=B(II-1)+RX+(SINA+DZ+COSA+DR)
      B(II)=B(II)-RX+(COSA+DZ-SINA+DR)
  620 IF(JJ.LE.O.OR.JJ.GT.ND) GC TO 640
      SINA= 0.
      COSA=1.
  630 B(JJ-1)=B(JJ-1)+ZX+(SINA+DZ+COSA+DR)
      B(JJ)=B(JJ)-ZX*(COSA+DZ-SINA+DR)
  640 CONTINUE
  701 IF (NUMST-EQ.0) GO TO 700
      DO 680 L=1,NLMST
      I=IT(L)
      J=JT(L)
      RT=ST(L)/6.
      PX=2. +R(])+R(J)
      ZX=P(1)+2.*P(J)
      XX=DSORT({R(J)}-R(I))++2+(Z(J)-Z(I))++2)
      1!=3*I-KSHIFT
      JJ=3+J-K SHIFT
      IF(!I.LE.O.?P.!I.GT.ND) GO TO 670
      P(TT)=B(TT)+RT+PX+XX
  670 IF(JJ.LE.O.GR.JJ.GT.ND) GO TO 680
      B(JJ) = B(JJ) + FT + ZX + XX
  680 CONTINUE
      ADD DISPLACEMENT BOUNDARY CONDITIONS
C* * * * * * * * * * * * *
  700 D3 750 M=NL,NH
      IDM=0
      IF(M.GT.ALIMNP) GO TO 750
      IF(CODE(M).GT.3) GO TO 751
      U=XR (M)
      N=3+M-2-KSHIFT
  752 IF(CCDE(M)) 740,750,710
  710 IF(CODE(M).EQ.1) GO TO 720
      IF (CODE(M).FQ.2) GO TO 740
      IF(CODE(M).EC.3) GO TO 730
      GO TO 740
  720 CALL MODIFY (MD2 , N. U)
      CODE(M)=CODE(M)+IDM
      GO TO 750
  730 CALL MEDIFY (ACZ , N. U)
  740 U=XZ(M)
```

N=N+1

COMMON BLOCK / ELDATA / MAP SIZE 28CO

```
SUBPRUTINE STRESS
       IMPLICIT REAL+8 (A-H, 0-Z)
      INTEGER CODE
      COMMON/BASIC/ACELZ, ANGVEL, ANGACC, TREF, VOL, NUMNP, NUMEL, NUMPC, NUMSC,
     INUMST
      CCMMCN/MATP/RO(6).E(12.16.6).EE(16).AOFTS(6)
      COMMON/NPDATA/ R(200), CODE(200), XR(200), Z(200), XZ(200),
      INPNUM (10.20) .T(200).XT(200)
      COMMON/ELDATA/ BETA(200), EPR(200), PR(20), SH(20), IX(200,5), IP(20),
      1.1P(20).IS(20).JS(20).ALPHA(200).IT(200).JT(200).ST(20)
      COMMON/APG/RRR(5),ZZZ(5),RR(4),ZZ(4),S(15,15),P(15),TT(6),
     14(6.15).CRZ(6.6).XI(10).ANGLE(4).SIG(18).EPS(18).N
      COMMON/CONVRG/IDDNE
       CC 4MCN/SCLVE/R(72) . A (72, 36) . NUMTC, MBAND
      COMMON/PLANE/NPP
      C3MMCN/RESULT/BS(6,15).D(6,6),C(6,6),AR,BB(6,9),CNS(6,6)
       CCMMCN/CIT/NEGL , NSLIP, ICRACK, ISLIP, INP, NSKIP
       COMMON/DATA1/PTN(200).RST(200).RNN(200)
      C74MON/DATA2/1FAIL(200), TB(200,12), ICR(200), IAD(200,4)
       DIMENSION LM(4) .TP(6).TR(3.3).Q(3)
C
       INTTIALTZE
C* * * * * * * *
       XKE =0.
       XPE=0.
       MDR THT=0
       FF 900= .005
       IDONF=1
       00 200 N=1.NUMEL
       !X(N.5)=TABS(!X(N.5))
       CALL QUAD
       D? 100 I=1.4
       11=3+1
       JJ=3+[X(N.I)
       P(I!-2)=9(JJ-2)
       D(TT-1)=B(JJ-1)
100
       P(II) = B(JJ)
       D7 11 T=1.12
 11
       P(I)=P(I)+TB(N,I)
       D7 110 !=1.3
110
       O(1) = P(1+12)
       D7 120 I=1.3
       D7 120 J=1,3
120
       TR(I,J)=S(I+12,J+12)
       CALL SYMINV(TP.3)
       D7 130 I=1.3
       P(1+12)=0.0
       07 130 J=1.3
```

**

```
DO 130 K=1,12
     P(1+12)=P(1+12)+TR(1,J)+(0(J)-S(J+12,K)+P(K))
     TTYPE=IABS(IX(N,5))
C
C
     MATRIX P NOW CONTAINS 15 DISPLACEMENTS FOR QUADRILATERAL ELEMENT
C
     CALCULATE AVERAGE STRAINS
C
C
     D7 140 1=1.6
     EPS(1)=0.0
     D7 140 J=1,15
140
     EPS([]=EPS([])+BS([,J])+P(J)
C
C
     CALCHLATE AVERAGE STRESSES
C
     07 15i I=1.6
     SIG(1)=0.0
     D7 151 J=1.6
     SIG(I)=SIG(I)+CRZ(I,J)*EPS(J)
151
     D7 152 1=1.6
     SIG(I)=SIG(I)-TT(I)
C
C
     CALCULATE STRAINS IN N-S-T COORDINATES
C
     D7 1.50 7=1.6
     EPS([+6]=0.0
     D7 150 J=1.6
     D7 150 F=1.6
150
     FP3(I+6)=EP5(I+6)+D(I,J)+C(J,K)+EPS(K)
C
C
     CALCULATE STRESSES IN N-S-T COORDIATES
C
     DO 160 T=1,6
      13(1+6)=0.0
     D7 160 J=1,6
     51G(1+6) = SIG(1+6)+CNS(1.J) *EPS(J+6)
160
     B7 161 M=1.6
     P(M)=0.0
     D7 161 !1=1,3
     IF(APFTS(MTYPE).EQ.1.) P(M)=CNS(M,II) +EE(II+9)
  161 P(M)=P(M)+(T(N)-TREF)+CNS(M, II)+EE(II+9)
     07 162 T=1.6
     SIG(1+6)=SIG(1+6)-P(1)
 162
C
C
     CALCULATE AND STORE INTERLAMINAR STRESSES
C
      1F(!CFACK.EO.O) GO TO 180
```

```
' G LEVEL 21
                               STRESS
                                                  DATE = 75066
                                                                        14/36/25
          PTN(N)=SIG(12)*DCJS(ALPHA(N))+SIG(11)*DSIN(ALPHA(N))
          RST(N)=SIG(12)+DSIN(ALPHA(N))-SIG(11)+DCOS(ALPHA(N))
          RNN(N)=SIG(9)
          IF(INP.NE.NEGL.AND.INP.NE.1) RETURN
     180
          CONTINUE
   C
          WRITE STPESSES
   C
   C
          WRITE STRAINS IN PERCENTAGE FORM
   C
          DO 300 I=1.12
      300 EPS([)=100. +EPS([)
          IF (MPRINT.NE.O) GO TO 210
          WPITE(6, 2000)
          WPITE(6,2002)
          MPRINT=19
      210 MPRINT=MPFINT-1
          WRITE(6, 2001) N, RPP(5), ZZZ(5), (SIG(I), I=1,12)
          WRITE(6,2003) T(N),(EPS(I),I=1,12)
      200 CONTINUE
    2000 FORMAT(129H1
                                 2
                                       Z
                                              SIGMAR
                                                       SIGMAZ
                                                                 SIGMAC
                                                                          SIGMA
                          EL
         1PZ SIGMAZC SIGMACP SIGMAN
                                          SIGMAS
                                                    SIGMAT
                                                             SIGHANS SIGMAST
         2 SIGMATNI
    2001
          FORMAT(1H0, 15, 1X, 2F7, 4, 12F9, 0)
                              TEMPERATURE
                                              EPSP
                                                        EPSZ
                                                                  EPSC
                                                                           EPSP
    2002 FORMAT(128H0
         12
               EPSZC
                        EPSCR
                                  EPSN
                                           EPSS
                                                     EPST
                                                              EPSNS
                                                                        EPSST
            FPSTM)
    2003
          F79MAT(6X,F13.0,2X,12F9.5)
          RETURN
          END
                    COMMON BLOCK / PASIC
                                           / MAP SIZE
                                                             3C
LOCATTON
              SYMBOL
                         LCCATION
                                       SYMBOL
                                                  LOCATION
                                                                 SYMBOL
                                                                           LOCAT
     0
              ANGVEL
                              8
                                       ANGACC
                                                      10
                                                                 TREF
    28
              NUMEL
                             20
                                       NUMPC
                                                      30
                                                                 NUMSC
                                                                                3
                    COMMON BLOCK /MATP
                                           / MAP SIZE
                                                          24F0
LICATION
              SYMBOL
                         LICATION
                                       SYMBOL
                                                  LOCATION
                                                                 SYMBOL
                                                                           LOCAT
     0
                             30
                                       EE
                                                    2430
                                                                 ARFTS
                                                                             248
                    COMMON BLOCK /NPDATA / MAP SIZE
                                                          2BC0
```

SYMBOL

XR

XT

LOCATION

2580

960

SYMBOL

Z

LOCAT

FA

LOCATION

1020

SYMBOL

CODE

T

LCCATION

1F40

```
SYMINV
FVEL
                                             DATE = 75066
                                                                    14/36/2
     SUBROUTINE SYMINU(A, MMAX)
     IMPLICIT REAL #8(A-H, 0-Z)
     DIMENSION A(NYAX, NMAX)
     DO 300 N=1.NMAX
     D=A(N,N)
     DO 100 J=1, NWAX
100 A(N,J)=-A(N,J)/D
     XAMM, I=1 015 CO
     TF(N.EO. !) GC TO 210
     D7 200 J=1, NMAX
     TF(N.NE.J) \wedge (T,J) = A(I,J) + A(I,N) + A(N,J)
200 CONTINUE
210 A(T,N)=A(T,N)/D
300 A(M,N)=1.0/D
     PETUPN
     ENO
               SCALAR MAP
1 "A;
         SYMBOL
                    LOCATION
                                   SYMBOL
                                              LOCATION
                                                             SYMBOL
                                                                        LOCA
         XAM 4
                        HA
                                   N
                                                  BC
               APPAY MAP
ICN
         SYMBIL
                   LCCATION
                                   SYMBOL
                                              LOCATION
                                                             SYMBOL
                                                                        LOCA
3
               STATEMENT NUMBER MAP
7 17 1
         STATEMENT LUCATION
                                   STATEMENT LOCATION
                                                             STATEMENT LOCA
                       194
                                        5
                                                 190
                                                                   6
              ς
)
                       228
                                       10
                                                 236
                                                                 11
                                                                           2
             14
                       344
                                       15
                                                 37F
EFFECT* MOID.BCD.COUPCE, NOLIST.NODECK, LOAD, MAP
EFFECT NAME . SYMINV . LINE . .
                                            50
```

16, PROGRAM SIZE =

902

STIPCE STATEMENTS =

119 DIAGNOSTICS CENERATED

```
SUBROUTINE TEMP(R,Z,T)
      IMPLICIT PEAL+8 (A-H, 0-Z)
      COMMONISCLVE/ X(888), Y(888), TEM(888), NUMTC, MBAND
      DIMENSION SMALL (20), ISM (20)
     * * * * * * * * * * * * *
      INITIALIZE
   * * * * * * * *
      J=1
      JMAX=16
      IF(NUMTC.LT.JMAX) JMAX=NUMTC
      DO 10 I=1,JMAX
      SMALL(II)=0.
   10 ISM(I)=0
C*
      FIND THE JMAX CLOSEST POINTS
   * * * * * * * * * * * * * *
      DO 50 I=1, NUMTC
      DSO=(X(I)-R)++2+(Y(I)-Z)++2
      IF(DSQ.GT..1E-4) GO TO 20
      T=TEM(I)
      FETUEN
   20 IF(1.En.1) SMALL(1)=DSO
      IF(I.En.1) *SM(1)=1
      IF(I.EQ.1) GO TO 50
      TF(SMALI(J).LE.DSQ.AND.J.LT.JMAX) SMALL(J+1)=DSQ
      IF(SMALL(J).LE.DSO.AND.J.LT.JMAX) ISM(J+1)=1
      IF(SMALL(J).LF.DSQ) GO TO 40
      D7 30 K=1,J
      JB=J-K +1
      TE(JB.En.O) GO TO 40
      SMALL (JR+1)=SMALL(JB)
      ISM(JB+1)=ISM(JB)
      SMALL(JB)=DSC
      ISM(JB)=!
      IF(JB.E0.1) 60 TO 40
      IF(SMALL (JB-1). LE.DSO) GO TO 40
   30 CENTINUE
   40 IF(J.LT.JMAX) J=J+1
   50 CONTINUE
     * * * * * * * * * * * * * * * * *
      FIND THE THIRD TEMPERATURE POINT BY AREA TEST
     * * * * * * * * * * * * *
      JCHK=JYAX-2
      J=0
      TI=ISM(1)
      12=154(2)
   60 13=15M(J+3)
      A9EA-.5*(Y(:1)*X(I3)-Y(I3)*X(I1)+Y(I3)*X(I2)-Y(I2)*X(I3)*
```

```
GLEVEL 21
                          TEMP
                                           DATE = 75066
                                                              14/36/2"
             Y(72)*X([1]-Y([1]*X([2))
       D1=(X(!?)-X(!!))**2+(Y([2]-Y(!!))**2
 C,
       TH DI IS APPROXIMATELY O. IT IS ASSUMED THAT THERE EXISTS A
 C
       DUPLICATION OF INPUT
       1F(D1.GT..1E-3) 00 TO 70
       12=13
       1=J+1
       90 TO 60
    70 IF (AREA + + 2. GT .. 1 + D1 + SMALL(1)) GO TO 80
       1=J+1
       TELU.LI.JCHK) GC TO 60
       WPITE(6,2000) 11.12.13.J
       T=TEM([1]
       FETUEN
 ****
       FIND TEMPERATURE INTERCEPT
 RO DETA=Y(11)*(TEM(13)-TEM(12))+Y(12)*(TEM(11)-TEM(13))
            +Y(13)*(TEM(12)-TEM(11))
       DETB=X(!1)*(TEM(12)-TEM(13))+X(12)*(TEM(13)-TEM(11))
           +X(13)*(TFF([1]-TEM([2])
       DETC=TEM([1])*(X([2)*Y([3)-X([3)*Y([2])+TEM([2]*(X([3)*Y([1])-X([1))*
      1Y(13))+TEM(!3)*(X(II)*Y(!2)-X(!2)*Y(!1))
       T=(DETA*P+DETE*Z+DETC)/(2.*AREA)
  2000 FORMAT (28H ERROR IN TEMPERATURE INPUT, 5H II=14,5H 12=14,
      15H [3=[4,4H J=[4]
       RETURN
       END
```

	C	SHACK BEJCK NE	OLVE / MAI	P SIZE 5348		
10 AT 1 TH	JUSHAS	LICATION	SYMBOL	LOCATION	SYMBOL	LOCA
O	Y	1800	TEM	3780	NUMTC	53.
	C1	IBPREGRAMS CAL	LED			
CONTIN	CANBUI	LECATION	SYMBOL	LOCATION	SYMATL	LOUA
113						
	30	ALAR MAD				
CATION	CANBUL	LCCATION	SYMBOL	LOCATION	SYMBOL	LOCA
120	F	128	Z	130	T	1
149	DETA	150	DETA	158	DETC	1
160	Ī	170	K	174	JB	1
18)	1.2	184	13	198	TT	1
10.5	1 6	104	1.5	170	1 1	•

```
SUBROUTINE TEM2(NUMNP)

IMPLICIT REAL+8(A-H,O-Z)

INTEGER CODE

COMMCN/NPDATA/ R(200),CODE(200),XR(200),Z(200),XZ(200),

INPN M(10,20),T(200),XT(200)

READ(5,1000) TCCNST

DO 100 N=1,NUMNP

1C0 T(N)=TCONST

1000 FORMAT(F10.0)

RETUPN
END
```

0		ON BLOCK /NPD LCCATION 640 1F40	SYMBOL XR XT	SIZE 2BCO LOCATION 960 2580	SYMBOL Z	L'ICA'
CATION		ROGRAMS CALLED) SYMBOL	LOCATION	SYMBOL	FOCV.
ФC		-				
		AR MAP				
	SYMBOL N	LCCATION AB	SYMBOL	LOCATION AC	SYMBOL	LUCA
	From	AT STATEMENT	AP			
PC AT I PN BO	SYMBOL	LOCATION	SYMBOL	LOCATION	SYMBOL	LOCA
	STAT	EMENT NUMBER I	1AP			
TO THE STATE OF TH	STATEMENT 5	LOCATION 138	STATEMENT 6	LOCATION 154	STATEMENT 7	LTICA

TN EFFECT* NCID, BCD, SCURCE, NTLIST, NTDECK, LOAD, MAP
IN EFFECT* NAME * TEM? , LINECNT * 50
ICS* STURCE STATEMENTS * 10, PROGRAM SIZF * 392
ICS* NO DIAGNISTICS GENERATED

```
SUBROUTINE TRISTF (II.JJ.KK)
      IMPLICIT REAL+8(A-H. 0-Z)
      INTEGEP CODE
      COMMON/MATP/RO(6), E(12, 16, 6), EE(16), AOFTS(6)
      COMMON/BASIC/ACÉLZ, ANGVEL, ANGACC, TREF, VOL, NUMNP, NUMEL, NUMPC, NUMSC,
     1 NUMST
      COMMON/ARG/RRR(5), ZZZ(5), RR(4), ZZ(4), 5(15,15), P(15), TT(6),
     14(6, 15), CPZ(6,6), XI(10), ANGLE (4), SIG. 18), EPS(18), N
      COMMON/NPDATA/ R(200), CODE(200), XR(200), Z(200), XZ(200),
     INPHUM(10.20) .T(200) .XT(200)
      COMMON/ELDATA/ BETA(200), EPR(200), PR(20), SH(20), IX(200,5), IP(20),
     1JP(20), 15(20), JS(20), ALPHA(200), IT(200), JT(200), ST(20)
      CCMMCN/RESULT/BS(6,15) D(6,6),C(6,6),AR,BB(6,9),CNS(6,6)
      DIMENSION B1(6,9), B2(6,9), B3(6,9), F(6,9), G(9,6), V(9,9)
      DIMESSION BF(3),BFR(3),BFZ(3),TP(9),B(9,9)
      MTYPE=IABS(IX(N,5))
      PF(1)=PFP(11)
      RR(2)=RRF(JJ)
      dd (3) = bet (kk)
      27(1)=727(11)
      77(7)=ZZZ(JJ)
      22(3) = 227(KK)
      CALL THIEF
      VOL=VOL+XI(1)
      GDMM=KF(2)*(72(3)-ZZ(1))+RR(1)*(ZZ(2)-ZZ(3))+RR(3)*(ZZ(1)-ZZ(2))
       nn 10 I=1.6
       DO-10 J=1.9
      B1(1,J)=0-0
      B2(1.J)=0.0
   10 83(I,J)=0.0
C
      FILL BI MATRIX-CONSTANT TERMS
      B1(1,1)=(22(2)-22(3))/COMM
      81(1.4) = (ZZ(3) - ZZ(1)) / COMM
      AL(1,7)=(22(1)-22(2))/COMM
      B1(3,1)=B1(1,1)
      81(3,4)=B](1,4)
      P1(3,7)=B1(1,7)
      B1(2,2)=(FF(3)-RF(2))/COMM
      B1(2.5)=(PF(1)-RR(3))/COMM
      H1(2.8)=(FR(2)-PR(1))/COPM
      H1(4,1)=B1(2,2)
      81(4,4)=81(2,5)
      R1(4,7)=B1(2,8)
      B1(4,2)=B1(1,1)
      B1(4,5)=B1(1,4)
      B1(4,8)=B1(1,7)
      81(5,3)=81(4,1)
      B1(5,6)=B1(4,4)
```

```
B1(5,9)=B1(4,7)
C
      FILL B2 MATRIX-1/R TERMS
      B2(3,1)=(1/COMM)+((2Z(3)-ZZ(2))+RR(2)+(RR(2)-RR(3);+ZZ(2))
      B2(3,4)=(1/CCMM)+((ZZ(1)-ZZ(3))+RR(3)-(RR(1)-RR(3))+ZZ(3))
      B2(3,7)=(1/CCMM)+((ZZ(2)-ZZ(1))+RR(1)+(RP(1)-RR(2))+ZZ(1))
      82(6.3)=-82(3.1)
      B2(6,6)=-B2(3;4)
      B2(6,9)=-82(3,7)
C
      FILL B3 MATRIX-Z/R TERMS
      B3(3,1)=(RF(3)-PR(2))/COMM
      B3(3,4)=(RR(1)-RR(3))/COMM
      63(3,7)=(PP(2)-RR(1))/COMM
      B3(6,3)=(FR(2)-RR(3))/COMM
      B3(6,6)=(RR(3)-RR(1))/COMM
      B3(6,9)=(RR(1)-RR(2))/COMM
      AR=AP+XI(1)
      DO 80 1=1.6
      00 80 J=1.9
80
      BB([,J)=B1([,J)+X[(1)+B2([,J)+X](2)+B3([,J)+X](4)
      DO 31 K=1.6
      DO 81 1=1,3
      AS(K,3+JJ-3+I)=BB(K,I+3)+BS(K,3+JJ-3+I)
      BS(K,3#11-3+1)=BB(K,1)+BS(K,3#11-3+1)
81
      BS(K,3+KX-3+1)=BB(K,1+6)+BS(K,3+KK-3+1)
      D7 110 I=1.9
      DO 110 J=1.9
      B(1.J)=0.0
      00 110 K=1.6
      D7 110 M=1.6
      B(!,J)=B(!,J)+B1(K,T)+CRZ(K,M)+(B1(M,J)+XT(1)
     1+B2(M,J)*X1(2)+B3(M,J)*X1(4)}
     2+82(K,1) +CFZ(K, M) +(B1(M,J) +XI(2)
     3+B2(M,J)*XI(3)+B3(M,J)*XI(5)}
     5+83(K,I) +CPZ(K, M) +(B1(M,J) +X1(4)
     6+R2(M, J) +XI(5)+B3(M, J) +XI(6) }
110
      CCNTINUE
      ASSEMBLE QUADRILATERAL STIFFNESS MATRIX, S, FROM TRIANGULAR
      STIFFNESS MATPIX, B.
      114=3+11-3
      JJ4=3+JJ-3
      KKM=3+KK-3
      DO 120 I=1.3
      DO 120 J=1.3
      S(11M+I,11M+J)=8(I
                           {L+MII.1+MII)2+{ L.
      S([[M+1,JJM+J]=E(]
                           (L+MLL, I+MII)2+(E+L,
                           ,J+6)+$([[M+[.KKM+J)
      5(IIM+T.KKM+J)=E(I
      S(JJH+I, I + HLL) 2+ { L, E+1) B = (L+4| 1, I + HLL| }
      (L+MLL.I+MLL)2+(E+L.E+I)8=(L+4LL.!+ML)2
```

```
S(JJM+1,KKH+J)=E(1+3,J+6)+$(JJM+1,KKM+J)
      S(KKM+1, TIM+J)=B(I+6,J ]+S(RKN+T,IIM+J)
      S(KKM+I,JJM+J)=B(I+6,J+3)+S(KKM+I,JJM+J)
S(KKM+I,KKN+J)=B(I+6,J+6)+S(KKM+I,KKM+J)
      CONTINUE : ...
      CONTINUE ASSEMBLE BODY FORCES MATRIX
120
      8F(1)=(7Z(3) +RR(2)-RR(3)+ZZ(21)/COMM
      BF(2)=(22(1)*PR(3)-RP(1)*22(3))/COMM
      BF(3)=(ZZ(2)*PR(1)-RR(2)*ZZ(11)/COMM
      BFP(1)=(ZZ(2)-ZZ(3))/COMM
      BFP(2)=(ZZ(3)-ZZ(1))/COMM
BFR(3)=(ZZ(1)-ZZ(2))/COMM
      BFZ(1)=(RR(3)-RR(2))/COMM
      BFZ(2)=(PP(1)-RR(3))/COMM
      PFL(3) = (PP(2) - RR(1)) / COMM
C
      BODY FORCE IN Z-DIRECTION
      COMM=-ACELZ#RD( WTYPE)
      D7 140 T=1.3
      11K = 3 = 1-1
  140 TP(||K)=COMM+(86(1)+XI(1)+BFR(1)+XI(7)+BFZ(1)+XI(8))
      BIDY FORCE IN P-DIPECTION
C.
      CCMM#ANGVEL++2+FC(MTYPE)
      Dr 150 I=1.3
      L=3+1-2
  150 TP(L)=CGMM*(BF(!)*XI(7)+BFR(!)*XI(9)+BFZ(!)*XI(10))
C
      BODY FORCES IN TANG. DIRECTION
      CCMM=-ANGACC#RC (MTYPE)
      D7 160 I=1.3
      * [M=3+[
  160 TO(11+)=CCMM+(BF(1)+X1(7)+BFR(1)+X1(9)+BFZ(1)+X1(10))
      ADD THEPMAL EFFECTS
      02 161 1=1.9
      09 161 K=1.6
     TP(J)=TP(J)+(X1(1)+B1(K,J)+X1(2)+B2(K.J)
     1+X1(4)=B3(K,J))=TT(K)
r
      REARFAMOR TO INTO P-MATRIX, THE BODY FORCES MATRIX
      K=3+11-2
      L=3*JJ-2
      4=3+KK-2
      07 170 1=1,3
      J=1-1
      [[]97+(L+X)9=(L+X)9
      P(L+J)=P(L+J)+TP(T+3)
  170 P(V+J)=P(M+J)+TP(I+6)
      PETHON
      END
```

DISTRIBUTION LIST

No. of		No. of	
Copies	Organization	Copies	Organization
12	Commander Defense Documentation Center ATTN: DDC-TCA Cameron Station Alexandria, VA 22314	US AT	mmander Army Missile Command IN: AMSMI-R AMSMI-RFL, Mr. B. Cobb AMSMI-RL, Mr. N. Comus distone Arsenal, AL 35809
	Director of Defense Research and Engineering ATTN: Tech Lib, Rm 3E-1039 Washington, DC 20301	1 Cor US AT	mmander Army Tank Automotive Command IN: AMSTA-RHFL rren, Mi 48090
	Commander US Army Materiel Command ATTN: AMCDMA-ST 5001 Eisenhower Avenue Alexandria, VA 22333	US I AT	nmander Army Mobility Equipment Research & Development Center IN: Tech Docu Cen, Bldg. 315 AMSME-RZT
1	Commander US Army Materiel Command ATTN: AMCRD-T 5001 Eisenhower Avenue Alexandria, VA 22333	2 Cor US	nmander Army Armament Command IN: AMSAR-RDT Mr. J. Salamon
1	Commander US Army Materiel Command ATTN: AMCRD-R 5001 Eisenhower Avenue Alexandria, VA 22333	6 Coi US	Dr. L. Johnson ck Island, IL 61202 mander Army Picatinny Arsenal IN: SARPA-FR-E, Dr. N. Clark
1	Commander US Army Aviation System Command ATTN: AMSAV-E 12th and Spruce Streets St. Louis, MO 63166		Mr. G. Randers-Pherson SARPA-AD-S, S. Polanski SARPA-FR-M-MA, M. Eig SARPA-FR-S-R, C. Larsen Tech Lib Ver, NJ 07801
1	Director US Army Air Mobility Research and Development Laboratory Ames Research Center Moffett Field, CA 94035	US AT	mander Army Frankford Arsenal IN: SARFA-C2500 SARFA-L3200 Mr. P. Gordon iladelphia, PA 19137
1	Commander US Army Electronics Command ATTN: AMSEL-RD Fort Monmouth, NJ 07703		

DISTRIBUTION LIST

No. of No. of Organization Copies Copies Organization 3 Commander 1 Commander US Army Watervliet Arsonal US Army Research Office ATTN: SARWV-RPD-SE P. O. Box 12211 Mr. M. Dale Research Triangle Park North Carolina 27709 Dr. J. Santini SARWV-PSD 2 Commander Dr. G. D'Andrea Watervliet, NY 12189 US Naval Air Systems Command ATTN: Code AIR-310 1 Commander Code AIR-350 US Army Harry Diamond Labs Washington, DC 20360 ATTN: AMXDO-TI 2800 Powder Mill Road 1 Commander Adelphi, MD 20783 US Naval Ordnance Systems Command ATTN: Code ORD-0332 4 Commander Washington, DC 20360 US Army Materials and Mechanics Research Center 2 Chief of Naval Research ATTN: AMXMR-ATL, W. Woods ATTN: Code 427 AMXMR-T, J. Mescall Code 470 AMXMR-TM, L. Leone Department of the Navy Tech Lib Washington, DC 20325 Watertown, MA 02172 3 Commander 1 Director US Naval Surface Weapons Center US Army TRADOC Systems ATTN: Dr. II. Sternburg Analysis Activity Dr. Walker ATTN: ATAA-SA Code 730, Lib White Sands Missile Range Silver Spring, MD 20910 New Mexico 88002 2 Commander 1 Assistant Secretary of the US Naval Surface Weapons Center Army (R&D) ATTN: Code GWD, K. Bannister ATTN: Asst for Research Tech Lib Washington, DC 20310 Dahlgren, VA 22448 2 HQDA (DAMA-ZA; DAMA-AR)

- 1 Commander US Naval Weapons Center ATTN: Code 45, Tech Lib China Lake, CA 93555
- 1 Director
 US Naval Research Laboratory
 Washington, DC 20350

Washington, DC 20310

1 HQDA (DAMA-CSM, LTC N. O.

Conner, Jr.)
Washington, DC 20310

DISTRIBUTION LIST

No. of Copies		No. of Copies	
1	USAF (AFRDDA) Washington, DC 20330	_	Director National Aeronautics and Space Administration
1	AFSC (SDW) Andrews AFB Washington, DC 20331		Langley Research Center Langley Station Hampton, VA 23365
	US Air Force Academy ATTN: Code FJS-RL(NC) Tech Lib Colorado Springs, CO 80840		Director National Aeronautics and Space Administration Lewis Research Center 21000 Brookpark Road
1	Commander Hill Air Force Base ATTN: Code AMA Code MMECB Utah 84401	1	Cleveland, OH 44135 Director Lawrence Radiation Laboratory ATTN: Dr. M. Wilkins
1	AFWL (SUL, LT Tennant) Kirtland AFB, NM 87116		P. O. Box 808 Livermore, CA 94550
1	AFLC (MMWMC) Wright-Patterson AFB, OH 4543		University of Illinois Aeronautical and Astronautical Engineering Department 101 Transportation Building
1	AFAL (AVW) Wright-Patterson AFB, OH 4543	3	ATTN: Prof. A. R. Zak Urbana, IL 61801
1	Director US Bureau of Mines ATTN: Mr. R. Watson 4800 Forbes Street Pittsburgh, PA 15213	Abe	erdeen Proving Ground Marine Corps Ln Ofc Dir, USAMSAA
1	Director Environmental Science Service: Administration ATTN: Code R, Dr. J. Rinehard US Department of Commerce Boulder, CO 80302		